On the secondary charging effects and structure of mesospheric dust particles impacting on rocket probes

Author:

Havnes O.,Næsheim L. I.

Abstract

Abstract. The dust probe DUSTY, first launched during the summer of 1994 (flights ECT–02 and ECT–07) from Andøya Rocket Range, northern Norway, was the first probe to unambiguously detect heavy charged mesospheric aerosols, from hereon referred to as dust. In ECT–02 the probe detected negatively charged dust particles in the height interval of 83 to 88.5 km. In this flight, the lower grid in the detector (Grid 2) measures both positive and negative currents in various regions, and we find that the relationship between the current measurements of Grid 2 and the bottom plate can only be explained by influence from secondary charge production on Grid 2. In ECT–07, which had a large coning, positive currents reaching the top grid of the probe were interpreted as due to the impact of positively charged dust particles. We have now reanalyzed the data from ECT–07 and arrived at the conclusion that the measured positive currents to this grid must have been mainly due to secondary charging effects from the impacting dust particles. The grid consists of a set of parallel wires crossed with an identical set of wires on top of it, and we find that if the observed currents were created from the direct impact of charged dust particles, then they should be very weakly modulated at four times the rocket spin rate ωR. Observations show, however, that the observed currents are strongly modulated at 2ωR. We cannot reproduce the observed large modulations of the impact currents in the dust layer if the currents are due only to the transfer of the charges on the impacted dust particles. Based on the results of recent ice cluster impact secondary charging experiments by Tomsic (2003), which found that a small fraction of the ice clusters, when impacting with nearly grazing incidence, carried away one negative charge −1e, we have arrived at the conclusion that similar, but significantly more effective, charging effects must be predominantly responsible for the positive currents measured by the top grid in ECT–07 and their large rotational modulation at 2ωR. Since the secondary effect is dependent on the size of the impacting dust, this opens up for the possibility of mapping the relative dust sizes throughout a dust layer by comparing the observed direct and secondary currents.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference26 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3