The chemical transport model Oslo CTM3

Author:

Søvde O. A.,Prather M. J.,Isaksen I. S. A.,Berntsen T. K.,Stordal F.,Zhu X.,Holmes C. D.,Hsu J.

Abstract

Abstract. We present here the global chemical transport model Oslo CTM3, an update of the Oslo CTM2. The update comprises a faster transport scheme, an improved wet scavenging scheme for large scale rain, updated photolysis rates and a new lightning parameterization. Oslo CTM3 is better parallelized and allows for stable, large time steps for advection, enabling more complex or high spatial resolution simulations. A new treatment of the horizontal distribution of lightning is presented and found to compare well with measurements. The vertical distribution of lightning is updated and found to be a large contributor to CTM2–CTM3 differences, producing more NOx in the tropical middle troposphere, and less at the surface and at high altitudes. Compared with Oslo CTM2, Oslo CTM3 is faster, more capable and has better conceptual models for scavenging, vertical transport and fractional cloud cover. CTM3 captures stratospheric O3 better than CTM2, but shows minor improvements in terms of matching atmospheric observations in the troposphere. Use of the same meteorology to drive the two models shows that some features related to transport are better resolved by the CTM3, such as polar cap transport, while features like transport close to the vortex edge are resolved better in the Oslo CTM2 due to its required shorter transport time step. The longer transport time steps in CTM3 result in larger errors, e.g., near the jets, and when necessary the errors can be reduced by using a shorter time step. Using a time step of 30 min, the new transport scheme captures both large-scale and small-scale variability in atmospheric circulation and transport, with no loss of computational efficiency. We present a version of the new transport scheme which has been specifically tailored for polar studies, resulting in more accurate polar cap transport than the standard CTM3 transport, confirmed by comparison to satellite observations. Inclusion of tropospheric sulfur chemistry and nitrate aerosols in CTM3 is shown to be important to reproduce tropospheric O3, OH and the CH4 lifetime well.

Funder

European Commission

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3