Comprehensive characterization of particulate intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry

Author:

He Xiao,Zheng Xuan,Zhang Shaojun,Wang XuanORCID,Chen Ting,Zhang Xiao,Huang Guanghan,Cao Yihuan,He Liqiang,Cao Xubing,Cheng YuanORCID,Wang ShuxiaoORCID,Wu Ye

Abstract

Abstract. Tailpipe emissions from three heavy-duty diesel vehicles (HDDVs), complying with varying emission standards and installed with diverse aftertreatment technologies, are collected at a certified chassis dynamometer laboratory. The HDDV-emitted intermediate-volatility and semi-volatile organic compound (I/SVOC) emission and the gas–particle partitioning of the I/SVOCs are investigated. Over 4000 compounds are identified and grouped into 21 categories. The dominant compound groups of particulate I/SVOCs are alkanes and phenolic compounds. For HDDVs without aftertreatment devices, i.e., diesel oxidation catalysts (DOCs) and diesel particulate filters (DPFs), the emitted I/SVOCs partition dramatically into the gas phase (accounting for ∼ 93 % of the total I/SVOC mass), with a few exceptions: hopane, four-ring polycyclic aromatic hydrocarbons (PAH4rings), and five-ring polycyclic aromatic hydrocarbons (PAH5rings). For HDDVs with DPFs and DOCs, the particulate fractions are reduced to a negligible level (i.e., less than 2 %). Nevertheless, 50 % of the total two-ring PAH mass is detected in the particle phase, which is much higher than the high-molecular-weight PAHs, arising from the positive sampling artifact of quartz filter absorbing organic vapors. The positive sampling artifact of quartz filter absorbing organic vapors is clearly observed, and uncertainties are discussed and quantified. Particulate I/SVOCs at low-speed, middle-speed, and high-speed phases are collected and analyzed separately. The emission factor (EF) distribution of the speciated organic aerosol (OA) on a two-dimensional volatility basis set (2D-VBS) space reveals that the fractions of OA with oxygen to carbon (O : C) ratios > 0.3 (0.4, 0.5) are 18.2 % (11.5 %, 9.5 %), 23 % (15.4 %, 13.6 %), and 29.1 % (20.6 %, 19.1 %) at the low-speed, middle-speed, and high-speed stages. These results help to resolve complex organic mixtures and trace the evolution of OA.

Funder

Shenzhen Science and Technology Innovation Program

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3