The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses

Author:

Karagodin-Doyennel Arseniy,Rozanov EugeneORCID,Sukhodolov Timofei,Egorova TatianaORCID,Sedlacek JanORCID,Ball William,Peter Thomas

Abstract

Abstract. There is evidence that the ozone layer has begun to recover owing to the ban on the production of halogenated ozone-depleting substances (hODS) accomplished by the Montreal Protocol and its amendments and adjustments (MPA). However, recent studies, while reporting an increase in tropospheric ozone from the anthropogenic NOx and CH4 and confirming the ozone recovery in the upper stratosphere from the effects of hODS, also indicate a continuing decline in the lower tropical and mid-latitudinal stratospheric ozone. While these are indications derived from observations, they are not reproduced by current global chemistry–climate models (CCMs), which show positive or near-zero trends for ozone in the lower stratosphere. This makes it difficult to robustly establish ozone evolution and has sparked debate about the ability of contemporary CCMs to simulate future ozone trends. We applied the new Earth system model (ESM) SOCOLv4 (SOlar Climate Ozone Links, version 4) to calculate long-term ozone trends between 1985–2018 and compare them with trends derived from the BAyeSian Integrated and Consolidated (BASIC) ozone composite and MERRA-2, ERA-5, and MSRv2 reanalyses. We designed the model experiment with a six-member ensemble to account for the uncertainty of the natural variability. The trend analysis is performed separately for the ozone depletion (1985–1997) and ozone recovery (1998–2018) phases of the ozone evolution. Within the 1998–2018 period, SOCOLv4 shows statistically significant positive ozone trends in the mesosphere, upper and middle stratosphere, and a steady increase in the tropospheric ozone. The SOCOLv4 results also suggest slightly negative trends in the extra-polar lower stratosphere, yet they barely agree with the BASIC ozone composite in terms of magnitude and statistical significance. However, in some realizations of the SOCOLv4 experiment, the pattern of ozone trends in the lower stratosphere resembles much of what is observed, suggesting that SOCOLv4 may be able to reproduce the observed trends in this region. Thus, the model results reveal marginally significant negative ozone changes in parts of the low-latitude lower stratosphere, which agrees in general with the negative tendencies extracted from the satellite data composite. Despite the slightly smaller significance and magnitude of the simulated ensemble mean, we confirm that modern CCMs such as SOCOLv4 are generally capable of simulating the observed ozone changes, justifying their use to project the future evolution of the ozone layer.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Ministry of Science and Higher Education of the Russian Federation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentangling the Advective Brewer‐Dobson Circulation Change;Geophysical Research Letters;2024-06-18

2. Russian Studies of Atmospheric Ozone and Its Precursors in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

3. Russian Investigations of Atmospheric Ozone and its Precursors in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

4. Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4;Frontiers in Earth Science;2023-08-10

5. The future ozone trends in changing climate simulated with SOCOLv4;Atmospheric Chemistry and Physics;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3