Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing
-
Published:2022-02-01
Issue:2
Volume:22
Page:1549-1573
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Fung Ka MingORCID, Heald Colette L.ORCID, Kroll Jesse H.ORCID, Wang Siyuan, Jo Duseong S.ORCID, Gettelman AndrewORCID, Lu Zheng, Liu Xiaohong, Zaveri Rahul A.ORCID, Apel Eric C., Blake Donald R., Jimenez Jose-LuisORCID, Campuzano-Jost PedroORCID, Veres Patrick R.ORCID, Bates Timothy S., Shilling John E.ORCID, Zawadowicz MariaORCID
Abstract
Abstract. Aerosol indirect radiative forcing (IRF), which characterizes how aerosols alter cloud formation and properties, is very sensitive to the preindustrial (PI) aerosol burden. Dimethyl sulfide (DMS), emitted from the ocean, is a dominant natural precursor of non-sea-salt sulfate in the PI and pristine present-day (PD) atmospheres. Here we revisit the atmospheric oxidation chemistry of DMS, particularly under pristine conditions, and its impact on aerosol IRF. Based on previous laboratory studies, we expand the simplified DMS oxidation scheme used in the Community Atmospheric Model version 6 with chemistry (CAM6-chem) to capture the OH-addition pathway and the H-abstraction pathway and the associated isomerization branch. These additional oxidation channels of DMS produce several stable intermediate compounds, e.g., methanesulfonic acid (MSA) and hydroperoxymethyl thioformate (HPMTF), delay the formation of sulfate, and,
hence, alter the spatial distribution of sulfate aerosol and radiative
impacts. The expanded scheme improves the agreement between modeled and
observed concentrations of DMS, MSA, HPMTF, and sulfate over most marine
regions, based on the NASA Atmospheric Tomography (ATom), the Aerosol and
Cloud Experiments in the Eastern North Atlantic (ACE-ENA), and the
Variability of the American Monsoon Systems (VAMOS)
Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx)
measurements. We find that the global HPMTF burden and the burden of sulfate produced from DMS oxidation are relatively insensitive to the
assumed isomerization rate, but the burden of HPMTF is very sensitive to a
potential additional cloud loss. We find that global sulfate burden under PI and PD emissions increase to 412 Gg S (+29 %) and 582 Gg S (+8.8 %), respectively, compared to the standard simplified DMS oxidation scheme. The resulting annual mean global PD direct radiative effect of DMS-derived sulfate alone is −0.11 W m−2. The enhanced PI sulfate produced via the gas-phase chemistry updates alone dampens the aerosol IRF as anticipated (−2.2 W m−2 in standard versus −1.7 W m−2, with updated gas-phase chemistry). However, high clouds in the tropics and low clouds in the Southern Ocean appear particularly sensitive to the additional aqueous-phase pathways, counteracting this change (−2.3 W m−2). This study confirms
the sensitivity of aerosol IRF to the PI aerosol loading and the
need to better understand the processes controlling aerosol formation in the PI atmosphere and the cloud response to these changes.
Funder
U.S. Department of Energy Biological and Environmental Research National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference108 articles.
1. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227,
1989. 2. Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J., Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C., Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Kleinman, L., Lee, Y.-N., Springston, S., Toniazzo, T., Krejci, R., Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G., Bower, K. N., Williams, P. I., Crosier, J., Crawford, I., Connolly, P., Allan, J. D., Covert, D., Bandy, A. R., Russell, L. M., Trembath, J., Bart, M., McQuaid, J. B., Wang, J., and Chand, D.: South East Pacific atmospheric composition and variability sampled along 20∘ S during VOCALS-REx, Atmos. Chem. Phys., 11, 5237–5262, https://doi.org/10.5194/acp-11-5237-2011, 2011. 3. Andreae, M. O.: Ocean-atmosphere interactions in the global biogeochemical
sulfur cycle, Mar. Chem., 30, 1–29,
https://doi.org/10.1016/0304-4203(90)90059-L, 1990. 4. Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial
volcanic sulfur emissions, J. Geophys. Res., 103, 25251–25261,
https://doi.org/10.1029/98JD02091, 1998. 5. Apel, E. C., Hornbrook, R. S., Hills, A. J., Blake, N. J., Barth, M. C.,
Weinheimer, A., Cantrell, C., Rutledge, S. A., Basarab, B.<span id="page1568"/>, Crawford, J.,
Diskin, G., Homeyer, C. R., Campos, T., Flocke, F., Fried, A., Blake, D. R.,
Brune, W., Pollack, I., Peischl, J., Ryerson, T., Wennberg, P. O., Crounse,
J. D., Wisthaler, A., Mikoviny, T., Huey, G., Heikes, B., O'Sullivan, D.,
and Riemer, D. D.: Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign, J.
Geophys. Res.-Atmos., 120, 2505–2523, https://doi.org/10.1002/2014JD022121,
2015.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|