Technical note: Use of PM2.5 to CO ratio as an indicator of wildfire smoke in urban areas

Author:

Jaffe Daniel A.ORCID,Schnieder Brendan,Inouye Daniel

Abstract

Abstract. Wildfires and their resulting smoke are an increasing problem in many regions of the world. However, identifying the contribution of smoke to pollutant loadings in urban regions can be challenging at low concentrations due to the presence of the usual array of anthropogenic pollutants. Here we propose a method using the difference in PM2.5 to CO emission ratios between smoke and typical urban pollution. For temperate wildfires, the mean emission ratio of PM2.5 to CO is in the range of 0.14–0.18 g PM2.5 g CO−1, whereas typical urban emissions have a PM2.5 to CO emissions ratio that is lower by a factor of 2–20. This gives rise to the possibility of using this ratio as an indicator of wildfire smoke. We use observations at a regulatory surface monitoring site in Sparks, NV, for the period of May–September 2018–2021. There were many smoke-influenced periods from numerous California wildfires that burned during this period. Using a PM2.5 / CO threshold of 30.0 µgm-3ppm-1, we can split the observations into smoke-influenced and no-smoke periods. We then develop a Monte Carlo simulation, tuned to local conditions, to derive a set of PM2.5 / CO values that can be used to identify smoke influence in urban areas. From the simulation, we find that a smoke enhancement ratio of 140 µgm-3ppm-1 best fits the observations, which is significantly lower than the ratio observed in fresh smoke plumes (e.g., 200–300 µgm-3ppm-1). The most likely explanation for this difference is loss of PM2.5 during dilution and transport to warmer surface layers. We find that the PM2.5 / CO ratio in urban areas is an excellent indicator of smoke and should prove to be useful to identify biomass burning influence on the policy-relevant concentrations of both PM2.5 and O3. Using the results of our Monte Carlo simulation, this ratio can also quantify the influence of smoke on urban PM2.5.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3