Enhanced natural releases of mercury in response to the reduction in anthropogenic emissions during the COVID-19 lockdown by explainable machine learning

Author:

Qin Xiaofei,Zhou Shengqian,Li Hao,Wang Guochen,Chen Cheng,Liu Chengfeng,Wang Xiaohao,Huo Juntao,Lin Yanfen,Chen Jia,Fu QingyanORCID,Duan Yusen,Huang Kan,Deng Congrui

Abstract

Abstract. The wide spread of the coronavirus (COVID-19) has significantly impacted the global human activities. Compared to numerous studies on conventional air pollutants, atmospheric mercury that has matched sources from both anthropogenic and natural emissions is rarely investigated. At a regional site in eastern China, an intensive measurement was performed, showing obvious decreases in gaseous elemental mercury (GEM) during the COVID-19 lockdown, while it was not as significant as most of the other measured air pollutants. Before the lockdown, when anthropogenic emissions dominated, GEM showed no correlation with temperature and negative correlations with wind speed and the height of the boundary layer. In contrast, GEM showed significant correlation with temperature, while the relationship between GEM and the wind speed/boundary layer disappeared during the lockdown, suggesting the enhanced natural emissions of mercury. By applying a machine learning model and the SHAP (SHapley Additive exPlanations) approach, it was found that the mercury pollution episodes before the lockdown were driven by anthropogenic sources, while they were mainly driven by natural sources during and after the lockdown. Source apportionment results showed that the absolute contribution of natural surface emissions to GEM unexpectedly increased (44 %) during the lockdown. Throughout the whole study period, a significant negative correlation was observed between the absolute contribution of natural and anthropogenic sources to GEM. We conclude that the natural release of mercury could be stimulated to compensate for the significantly reduced anthropogenic GEM via the surface–air exchange in the balance of mercury.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3