Sources of concentric gravity waves generated by a moving mesoscale convective system in southern Brazil

Author:

Nyassor Prosper K.ORCID,Wrasse Cristiano M.,Paulino IgoORCID,São Sabbas Eliah F. M. T.,Bageston José V.,Naccarato Kleber P.ORCID,Gobbi Delano,Figueiredo Cosme A. O. B.ORCID,Ayorinde Toyese T.,Takahashi Hisao,Barros Diego

Abstract

Abstract. The studies on the sources of three concentric gravity waves (CGWs) excited by a moving mesoscale convective system (MCS) on the night of 1–2 October 2019 are investigated. These CGWs were observed using a hydroxyl (OH) all-sky imager, whereas the MCS was observed by the Geostationary Operational Environmental Satellite (GOES). Using 2D spectral analysis, we observed that the three CGWs have horizontal wavelength λH between ∼30–55 km, phase speed cH∼70–90 m s−1, and period τ∼7–12 min. Using backward ray tracing, we found that two of the CGWs were excited from convective cores within the MCS. We also found that the epicenters of the two waves were close to the tropopause positions of the ray-traced paths and nearby convective cores. Regarding the source, we verified that on this night the tropopause was ∼-80 ∘C, which was ∼10 ∘C colder than the days preceding and after the MCS and also colder than usually observed. Since the tropopause height and temperature are fundamental parameters underlying the analysis of the overshooting extent, we developed our own methodology to establish a reference tropopause that would enable a quantitative estimate of this parameter. Since the MCS (CGWs source) was moving, the overshooting convective cores were tracked in space and time. Using the tracking of the overshooting tops (OTs) in space and time with the aid of reverse ray tracing, we found that two out of the three CGWs were excited by the MCS, whereas the source of the remaining one was not directly associated with the MCS.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3