Towards monitoring the CO2 source–sink distribution over India via inverse modelling: quantifying the fine-scale spatiotemporal variability in the atmospheric CO2 mole fraction
-
Published:2022-12-01
Issue:23
Volume:22
Page:15287-15312
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Thilakan VishnuORCID, Pillai DhanyalekshmiORCID, Gerbig ChristophORCID, Galkowski MichalORCID, Ravi Aparnna, Anna Mathew Thara
Abstract
Abstract. Improving the estimates of CO2 sources and sinks over India through inverse methods calls for a comprehensive atmospheric monitoring system involving atmospheric transport models that make a realistic accounting of atmospheric CO2 variability along with a good coverage of ground-based monitoring stations. This study investigates the importance of representing fine-scale variability in atmospheric CO2 in models for the optimal use of observations through inverse modelling. The unresolved variability in atmospheric CO2 in coarse models is quantified by using WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) simulations at a spatial resolution of 10 km × 10 km. We show that the representation errors due to unresolved variability in the coarse model with a horizontal resolution of 1∘ (∼ 100 km) are considerable (median values of 1.5 and 0.4 ppm, parts per million, for the surface and column CO2, respectively) compared to the measurement errors. The monthly averaged surface representation error reaches up to
∼ 5 ppm, which is even comparable to half of the magnitude of the
seasonal variability or concentration enhancement due to hotspot emissions.
Representation error shows a strong dependence on multiple factors such as
time of the day, season, terrain heterogeneity, and changes in meteorology
and surface fluxes. By employing a first-order inverse modelling scheme
using pseudo-observations from nine tall-tower sites over India, we show
that the net ecosystem exchange (NEE) flux uncertainty solely due to
unresolved variability is in the range of 3.1 % to 10.3 % of the total NEE of the region. By estimating the representation error and its impact on flux estimations during different seasons, we emphasize the need to take account of fine-scale CO2 variability in models over the Indian subcontinent to better understand processes regulating CO2 sources and sinks. The efficacy of a simple parameterization scheme is further demonstrated to capture these unresolved variations in coarse models.
Funder
Max-Planck-Gesellschaft Science and Engineering Research Board
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference103 articles.
1. Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, 2019. 2. Ahmadov, R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolman,
A. J., and Sarrat, C.: Mesoscale covariance of transport and CO2
fluxes: Evidence from observations and simulations using the WRF-VPRM
coupled atmosphere-biosphere model, J. Geophys. Res., 112,
D22107, https://doi.org/10.1029/2007jd008552, 2007. 3. Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2, Biogeosciences, 6, 807–817, https://doi.org/10.5194/bg-6-807-2009, 2009. 4. Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A.
M., de Gouw, J. A., Meagher, J., E.-Y., Edgerton, E., Shaw, S., and Trainer,
M.: A volatility basis set model for summertime secondary organic aerosols
over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012. 5. Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|