Measurement report: Size-resolved chemical characterisation of aerosols in low-income urban settlements in South Africa

Author:

Segakweng Constance K.,van Zyl Pieter G.ORCID,Liousse Cathy,Beukes Johan P.,Swartz Jan-Stefan,Gardrat Eric,Dias-Alves Maria,Language Brigitte,Burger Roelof P.,Piketh Stuart J.

Abstract

Abstract. Naturally and anthropogenically emitted aerosols, which are determined by their physical and chemical properties, have an impact on both air quality and the radiative properties of the earth. An important source of atmospheric particulate matter (PM) in South Africa is household combustion for space heating and cooking, which predominantly occurs in low-income urban settlements. The aim of this study was to conduct a detailed size-resolved assessment of chemical characteristics of aerosols associated with household combustion through the collection of particulates in low-income urban settlements in South Africa to quantify the extent of the impacts of atmospheric pollution. Outdoor (ambient) and indoor aerosols in different size fractions were collected during summer and winter in four low-income urban settlements located in the north-eastern interior on the South African Highveld, i.e. Kwadela, Kwazamokuhle, Zamdela, and Jouberton. Mass concentration and chemical composition was determined for three size fractions, namely, PM1, PM2.5, and PM2.5−10. The highest concentrations of particulates were measured indoors with the highest mass concentration determined in the indoor PM2.5−10 (coarse) size fraction. However, the highest mass concentrations were determined in PM1 in all outdoor aerosol samples collected during winter and summer, and in indoor samples collected during summer. Significantly higher concentrations were determined for SO4-2 in outdoor and indoor particulates compared to other ionic species, with NH4+ and NO3- being the second most abundant. SO4-2 and NH4+ almost exclusively occurred in the PM1 size fraction, while NO3- was the major constituent in the larger size fractions. The highest SO4-2 levels were recorded for the winter and summer outdoor campaigns conducted at Zamdela, while NO3- and NH4+ concentrations were higher during the winter outdoor campaign. The combined concentrations of trace elements were higher for indoor particulates compared to outdoor aerosols, while the total trace element concentrations in PM1 were substantially higher than levels thereof in the two larger size fractions of particulates collected during all sampling campaigns. No distinct seasonal trend was observed for the concentrations of trace elements. Na, Ca, and Cr had the highest concentrations in particulates collected during outdoor and indoor sampling campaigns. Ni concentrations in outdoor and indoor aerosols exceeded the annual average European standard. PM1 collected during all sampling campaigns in low-income urban settlements had the highest organic carbon (OC) and elemental carbon (EC) concentrations. The highest OC and EC levels were determined in PM1 collected during the winter indoor campaign. OC and EC concentrations were highest during winter, which can be attributed to changes in meteorological patterns and increased household combustion during winter. Low OC/EC ratios determined for particulates collected in low-income urban settlements are indicative of OC and EC being mainly associated with local sources of these species. OC concentrations determined in this study were an order of magnitude lower than OC concentrations determined for ambient aerosols collected in the north-eastern interior of South Africa, while similar EC levels were measured. According to estimated dust concentrations, it was indicated that dust is the major constituent in all size ranges of particulates collected in this study, while trace elements were the second most abundant. However, trace elements made the highest contribution to indoor PM1 and PM1−2.5 mass. Mass concentrations and chemical concentrations determined for aerosols collected in low-income settlements reflect the regional impacts of anthropogenic sources in the north-eastern interior of South Africa and the influence of local sources.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference60 articles.

1. Adesina, J. A., Piketh, S. J., Qhekwana, M., Burger, R., Language, B., and Mkhatshwa, G.: Contrasting indoor and ambient particulate matter concentrations and thermal comfort in coal and non-coal burning households at South Africa Highveld, Sci. Total Environ., 699, 134403, https://doi.org/10.1016/j.scitotenv.2019.134403, 2020.

2. Adgate, J. L., Mongin, S. J., Pratt, G. C., Zhang, J., Field, M. P., Ramachandran, G., and Sexton, K.: Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5, Sci. Total Environ., 386, 21–32, https://doi.org/10.1016/j.scitotenv.2007.07.007, 2007.

3. Adon, A. J., Liousse, C., Doumbia, E. T., Baeza-Squiban, A., Cachier, H., Léon, J.-F., Yoboué, V., Akpo, A. B., Galy-Lacaux, C., Guinot, B., Zouiten, C., Xu, H., Gardrat, E., and Keita, S.: Physico-chemical characterization of urban aerosols from specific combustion sources in West Africa at Abidjan in Côte d'Ivoire and Cotonou in Benin in the frame of the DACCIWA program, Atmos. Chem. Phys., 20, 5327–5354, https://doi.org/10.5194/acp-20-5327-2020, 2020.

4. Aurela, M., Beukes, J. P., Van Zyl, P. G., Vakkari, V., Teinilä, K., Saarikoski, S., and Laakso, L.: The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa, S. Afr. J. Sci., 112, 2015–0223, https://doi.org/10.17159/sajs.2016/20150223, 2016.

5. Booyens, W., Van Zyl, P. G., Beukes, J. P., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Josipovic, M., Venter, A. D., Jaars, K., Laakso, L., Vakkari, V., Kulmala, M., and Pienaar, J. J.: Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa, J. Atmos. Chem., 72, 43–64, https://doi.org/10.1007/s10874-015-9304-6, 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3