Long-term trends and drivers of aerosol pH in eastern China
-
Published:2022-10-27
Issue:20
Volume:22
Page:13833-13844
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhou Min, Zheng GuangjieORCID, Wang Hongli, Qiao Liping, Zhu Shuhui, Huang DanDan, An Jingyu, Lou ShengrongORCID, Tao Shikang, Wang Qian, Yan Rusha, Ma Yingge, Chen Changhong, Cheng YafangORCID, Su HangORCID, Huang ChengORCID
Abstract
Abstract. Aerosol acidity plays a key role in regulating the chemistry and toxicity of atmospheric aerosol particles. The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols.
Here, we reported the first trend analysis of aerosol pH from 2011 to 2019
in eastern China, calculated with the ISORROPIA model based on observed gas
and aerosol compositions. The implementation of the Air Pollution Prevention and Control Action Plan led to −35.8 %, −37.6 %, −9.6 %, −81.0 % and 1.2 % changes of PM2.5, SO42-, NHx, non-volatile cations (NVCs) and NO3- in the Yangtze River Delta (YRD) region during this period. Different from the drastic changes of aerosol compositions due to the implementation of the Air Pollution Prevention and Control Action Plan, aerosol pH showed a minor change of −0.24 over the 9 years. Besides the multiphase buffer effect, the opposite effects from the changes of SO42- and non-volatile cations played key roles in determining this minor pH trend, contributing to a change of +0.38 and −0.35, respectively. Seasonal variations in aerosol pH were mainly driven by the temperature, while the diurnal variations were driven by both temperature and relative humidity. In the future, SO2, NOx and NH3 emissions are expected to be further reduced by 86.9 %, 74.9 % and 41.7 % in 2050 according to the best health effect pollution control scenario (SSP1-26-BHE). The corresponding aerosol pH in eastern China is estimated to increase by ∼0.19, resulting in 0.04 less
NO3- and 0.12 less NH4+ partitioning ratios, which suggests that NH3 and NOx emission controls are effective in mitigating haze pollution in eastern China.
Funder
Shanghai Rising-Star Program National Natural Science Foundation of China Science and Technology Commission of Shanghai Municipality National Key Research and Development Program of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference52 articles.
1. Battaglia, M. A., Douglas, S., and Hennigan, C. J.: Effect of the Urban Heat
Island on Aerosol pH, Environ. Sci. Technol., 51, 13095–13103, https://doi.org/10.1021/acs.est.7b02786, 2017. 2. Battaglia Jr., M. A., Weber, R. J., Nenes, A., and Hennigan, C. J.: Effects
of water-soluble organic carbon on aerosol pH, Atmos. Chem. Phys., 19, 14607–14620, https://doi.org/10.5194/acp-19-14607-2019, 2019. 3. Cai, S., Wang, Y., Zhao, B., Wang, S., Chang, X., and Hao, J.: The impact of
the “Air Pollution Prevention and Control Action Plan” on PM2.5
concentrations in Jing-Jin-Ji region during 2012–2020, Sci. Total Environ.,
580, 197–209, https://doi.org/10.1016/j.scitotenv.2016.11.188, 2017. 4. Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D.,
Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: Dominant role of emission
reduction in PM2.5 air quality improvement in Beijing during 2013–2017:
a model-based decomposition analysis, Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, 2019. 5. Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang,
Q., He, K., Carmichael, G., Poscjl, U., and Su, H.: Reactive nitrogen
chemistry in aerosol water as a source of sulfate during haze events in China, Sci. Adv., 2, 1–11, https://doi.org/10.1126/sciadv.1601530, 2016.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|