Rapid reappearance of air pollution after cold air outbreaks in northern and eastern China

Author:

Liu Qian,Chen GuixingORCID,Sheng Lifang,Iwasaki Toshiki

Abstract

Abstract. The cold air outbreak (CAO) is the most important way to reduce air pollution during the winter over northern and eastern China. However, a rapid reappearance of air pollution is usually observed during its decay phase. Is there any relationship between the reappearance of air pollution and the properties of CAO? To address this issue, we investigated the possible connection between air pollution reappearance and CAO by quantifying the properties of the residual cold air mass after CAO. Based on the analyses of recent winters (2014–2022), we found that the rapid reappearance of air pollution in the CAO decay phase has an occurrence frequency of 63 %, and the air quality in more than 50 % of CAOs worsens compared to that before CAO. The reappearance of air pollution tends to occur in the residual cold air mass with a weak horizontal flux during the first 2 d after CAO. By categorizing the CAOs into groups of rapid and slow air pollution reappearance, we found that the residual cold air mass with a moderate depth of 150–180 hPa, a large negative heat content, and small slopes of isentropes is favorable for the rapid reappearance of air pollution. Among these factors, the cold air mass depth is highly consistent with the mixing layer height, below which most air pollutants are found; the negative heat content and slope of isentropes in the cold air mass jointly determine the intensity of low-level vertical stability. The rapid reappearance of air pollution is also attributed to the maintenance of the residual cold air mass and the above conditions, which are mainly regulated by the dynamic transport process rather than diabatic cooling or heating. Furthermore, analysis of the large-scale circulation of CAOs in their initial stage shows that the anticyclonic (cyclonic) pattern in northern Siberia (northeastern Asia) can be recognized as a precursor for the rapid (slow) reappearance of air pollution after the CAO.

Funder

National Natural Science Foundation of China

Major Projects of Guangdong Education Department for Foundation Research and Applied Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3