Mapping the dependence of black carbon radiative forcing on emission region and season
-
Published:2022-09-08
Issue:17
Volume:22
Page:11579-11602
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Räisänen PetriORCID, Merikanto JoonasORCID, Makkonen Risto, Savolahti Mikko, Kirkevåg AlfORCID, Sand MariaORCID, Seland Øyvind, Partanen Antti-IlariORCID
Abstract
Abstract. For short-lived climate forcers such as black carbon (BC), the
atmospheric concentrations, radiative forcing (RF), and, ultimately, the subsequent effects on climate, depend on the location and timing of the emissions. Here, we employ the NorESM1-Happi version of the Norwegian Earth System Model to systematically study how the RF associated with BC emissions depends on the latitude, longitude, and seasonality of the emissions. The model aerosol scheme is run in an offline mode to allow for an essentially noise-free evaluation of the RF associated with even minor changes in emissions. A total of 960 experiments were run to evaluate the BC direct RF (dirRF) and the RF associated with BC in snow/ice (snowRF) for emissions in 192 latitude–longitude boxes covering the globe, both for seasonally uniform emissions and for emissions in each of the four seasons
separately. We also calculate a rough estimate of the global temperature response to regional emissions and provide a Fortran-based tool to facilitate the further use of our results. Overall, the results demonstrate that the BC RFs strongly depend on the latitude, longitude, and season of the emissions. In particular, the global mean dirRF normalized by emissions (direct specific forcing; dirSF) depends much more strongly on the emission location than suggested by previous studies that have considered emissions from continental-/subcontinental-scale regions. Even for seasonally uniform
emissions, dirSF varies by more than a factor of 10, depending on the emission location. These variations correlate strongly with BC lifetime, which varies from less than 2 to 11 d. BC dirSF is largest for emissions in tropical convective regions and in subtropical and midlatitude continents in summer, both due to the abundant solar radiation and strong convective transport, which increases BC lifetime and the amount of BC above clouds. The dirSF is also relatively large for emissions in high-albedo, high-latitude regions such as Antarctica and Greenland. The dependence of snow specific forcing (snowSF) on the emission location is even larger. While BC emissions originating from most low-latitude regions result in negligible snowSF, the maxima of snowSF for emissions in polar regions greatly exceed the largest values of dirSF for low-latitude emissions. The large magnitude of snowSF for high-latitude BC emissions suggests that, for a given mass of BC emitted, the climate impacts are also largest for high-latitude emissions. The additivity of the RFs resulting from BC emissions in different regions and seasons is also investigated. It is found that dirRF is almost additive for current-day emissions, so that summing the RFs computed for individual regions/seasons without considering BC emissions from elsewhere overestimates dirRF by less than 10 %. For snowRF, the overestimate is somewhat larger, at ∼ 20 %.
Funder
H2020 Societal Challenges Nordisk Ministerråd Academy of Finland Business Finland Norges Forskningsråd
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference75 articles.
1. Aamaas, B., Berntsen, T. K., Fuglestvedt, J. S., Shine, K. P., and Bellouin, N.: Regional emission metrics for short-lived climate forcers from multiple models, Atmos. Chem. Phys., 16, 7451–7468, https://doi.org/10.5194/acp-16-7451-2016, 2016. a 2. Aamaas, B., Berntsen, T. K., Fuglestvedt, J. S., Shine, K. P., and Collins, W. J.: Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models, Atmos. Chem. Phys., 17, 10795–10809, https://doi.org/10.5194/acp-17-10795-2017, 2017. a, b, c 3. Abdul-Razzak, H., and Ghan, S. J.: A parameterization of aerosol activation:
2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844,
https://doi.org/10.1029/1999JD901161, 2000. a 4. Allen, R. J. and Landuyt, W.: The vertical distribution of black carbon
in CMIP5 models: Comparison to observations and the importance of convective
transport, J. Geophys. Res.-Atmos., 119, 4808–4835,
https://doi.org/10.1002/2014JD021595, 2014. a, b 5. AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate
forcers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway,
vii + 116 pp.,
https://www.amap.no/documents/download/2506/inline
(last access: 5 August 2022), 2015. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|