Contributions of primary sources to submicron organic aerosols in Delhi, India

Author:

Bhandari Sahil,Arub ZainabORCID,Habib Gazala,Apte Joshua S.,Hildebrandt Ruiz LeaORCID

Abstract

Abstract. Delhi, India, experiences extremely high concentrations of primary organic aerosol (POA). Few prior source apportionment studies on Delhi have captured the influence of biomass burning organic aerosol (BBOA) and cooking organic aerosol (COA) on POA. In a companion paper, we develop a new method to conduct source apportionment resolved by time of day using the underlying approach of positive matrix factorization (PMF). We call this approach “time-of-day PMF” and statistically demonstrate the improvements of this approach over traditional PMF. Here, we quantify the contributions of BBOA, COA, and hydrocarbon-like organic aerosol (HOA) by applying positive matrix factorization (PMF) resolved by time of day on two seasons (winter and monsoon seasons of 2017) using organic aerosol measurements from an aerosol chemical speciation monitor (ACSM). We deploy the EPA PMF tool with the underlying Multilinear Engine (ME-2) as the PMF solver. We also conduct detailed uncertainty analysis for statistical validation of our results. HOA is a major constituent of POA in both winter and the monsoon. In addition to HOA, COA is found to be a major constituent of POA in the monsoon, and BBOA is found to be a major constituent of POA in the winter. Neither COA nor the different types of BBOA were resolved in the seasonal (not time-resolved) analysis. The COA mass spectra (MS) profiles are consistent with mass spectral profiles from Delhi and around the world, particularly resembling MS of heated cooking oils with a high m/z 41. The BBOA MS have a very prominent m/z 29 in addition to the characteristic peak at m/z 60, consistent with previous MS observed in Delhi and from wood burning sources. In addition to separating the POA, our technique also captures changes in MS profiles with the time of day, a unique feature among source apportionment approaches available. In addition to the primary factors, we separate two to three oxygenated organic aerosol (OOA) components. When all factors are recombined to total POA and OOA, our results are consistent with seasonal PMF analysis conducted using EPA PMF. Results from this work can be used to better design policies that target relevant primary sources of organic aerosols in Delhi.

Funder

Welch Foundation

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3