What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?

Author:

Shi LameiORCID,Zhang Jiahua,Zhang Da,Wang Jingwen,Meng Xianglei,Liu Yuqin,Yao Fengmei

Abstract

Abstract. Changes in large-scale circulation, especially El Niño–Southern Oscillation (ENSO), have significant impacts on dust activities over the dust source and downwind regions. However, these impacts present an interdecadal pattern, and it remains less clear which factors lead to the interdecadal variability of the ENSO impact on dust activities over northwestern South Asia, although previous studies have discussed the response of interannual dust activities over northwestern South Asia to the ENSO circle. Based on the linear regression model and MERRA-2 atmospheric aerosol reanalysis data, this study investigated the interdecadal variability of the ENSO impact on dust activities as well as the associated possible atmospheric drivers under two different warming phases over northwestern South Asia. Results indicated that the relationship between ENSO and dust column mass density (DUCMASS) experienced an obvious shift from the accelerated global warming period (1982–1996) to the warming hiatus period (2000–2014). The change in Atlantic and Indian Ocean sea surface temperature anomaly (SSTA) patterns weakened the impact of ENSO on dust activities over northwestern South Asia during 1982–1996, while the change in Pacific Decadal Oscillation (PDO) strengthened ENSO's effect when it was in phase with ENSO. Both the Atlantic and Indian Ocean SSTA patterns were modulated by the duration of ENSO events (i.e., continuing and emerging ENSO). This study provides new insights into numerical simulation involving the influence of atmospheric teleconnections on the variability of dust activities and their influence mechanisms.

Funder

CAS Key Laboratory of Digital Earth Science

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3