Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO2 radicals in Shenzhen in 2018

Author:

Yang Xinping,Lu KedingORCID,Ma Xuefei,Gao Yue,Tan ZhaofengORCID,Wang HaichaoORCID,Chen Xiaorui,Li XinORCID,Huang Xiaofeng,He Lingyan,Tang Mengxue,Zhu Bo,Chen Shiyi,Dong Huabin,Zeng Limin,Zhang Yuanhang

Abstract

Abstract. The ambient radical concentrations were measured continuously by laser-induced fluorescence during the STORM (STudy of the Ozone foRmation Mechanism) campaign at the Shenzhen site, located in the Pearl River Delta in China, in the autumn of 2018. The diurnal maxima were 4.5×106 cm−3 for OH radicals and 4.2×108 cm−3 for HO2 radicals (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime), respectively. The state-of-the-art chemical mechanism underestimated the observed OH concentration, similar to the other warm-season campaigns in China. The OH underestimation was attributable to the missing OH sources, which can be explained by the X mechanism. Good agreement between the observed and modeled OH concentrations was achieved when an additional numerical X equivalent to 0.1 ppb NO concentrations was added into the base model. The isomerization mechanism of RO2 derived from isoprene contributed approximately 7 % to the missing OH production rate, and the oxidation of isoprene oxidation products (MACR and MVK) had no significant impact on the missing OH sources, demonstrating further exploration of unknown OH sources is necessary. A significant HO2 heterogeneous uptake was found in this study, with an effective uptake coefficient of 0.3. The model with the HO2 heterogeneous uptake can simultaneously reproduce the OH and HO2 concentrations when the amount of X changed from 0.1 to 0.25 ppb. The ROx primary production rate was dominated by photolysis reactions, in which the HONO, O3, HCHO, and carbonyls photolysis accounted for 29 %, 16 %, 16 %, and 11 % during the daytime, respectively. The ROx termination rate was dominated by the reaction of OH+NO2 in the morning, and thereafter the radical self-combination gradually became the major sink of ROx in the afternoon. As the sum of the respective oxidation rates of the pollutants via reactions with oxidants, the atmospheric oxidation capacity was evaluated, with a peak of 11.8 ppb h−1 around noontime. The ratio of P(O3)net to AOCVOCs, which indicates the yield of net ozone production from VOC oxidation, trended to increase and then decrease as the NO concentration increased. The median ratios ranged within 1.0–4.5, with the maximum existing when the NO concentration was approximately 1 ppb. The nonlinear relationship between the yield of net ozone production from VOC oxidation and NO concentrations demonstrated that optimizing the NOx and VOC control strategies is critical to controlling ozone pollution effectively in the future.

Funder

Beijing Municipal Natural Science Foundation

National Key Basic Research Program For Youth

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3