Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season

Author:

Jeong UkkyoORCID,Tsay Si-Chee,Hsu N. Christina,Giles David M.ORCID,Cooper John W.,Lee Jaehwa,Swap Robert J.ORCID,Holben Brent N.ORCID,Butler James J.,Wang Sheng-HsiangORCID,Chantara Somporn,Hong Hyunkee,Kim Donghee,Kim JhoonORCID

Abstract

Abstract. With the advent of spaceborne spectroradiometers in a geostationary constellation, measuring high spectral resolution ultraviolet–visible (UV-VIS) and selected near-/shortwave-infrared (NIR/SWIR) radiances can enable the probing of the life cycle of key atmospheric trace gases and aerosols at higher temporal resolutions over the globe. The UV-VIS measurements are important for retrieving several key trace gases (e.g., O3, SO2, NO2, and HCHO) and particularly for deriving aerosol characteristics (e.g., aerosol absorption and vertical profile). This study examines the merit of simultaneous retrievals of trace gases and aerosols using a ground-based spectroradiometer covering the UV-NIR to monitor their physicochemical processes and to obtain reliable aerosol information for various applications. During the 2019 pre-monsoon season over northern Thailand, we deployed a ground-based SMART–s (Spectral Measurements for Atmospheric Radiative Transfer–spectroradiometer) instrument, which is an extended-range Pandora with reliable radiometric calibration in the 330–820 nm range, to retrieve remotely sensed chemical and aerosol properties for the first time near biomass burning sources. The high spectral resolution (∼ 1.0 nm full width half maximum with ∼ 3.7 × oversampling) of sun and sky measurements from SMART–s provides several key trace gases (e.g., O3, NO2, and H2O) and aerosol properties covering the UV where significant light absorption occurs by the carbonaceous particles. During the measurement period, highly correlated total column amounts of NO2 and aerosol optical thickness (τaer) retrieved from SMART–s (correlation coefficient, R=0.74) indicated their common emissions from biomass burning events. The SMART–s retrievals of the spectral single scattering albedo (ω0) of smoke aerosols showed an abrupt decrease in the UV, which is an important parameter dictating photochemical processes in the atmosphere. The values of ω0 and column precipitable water vapor (H2O) gradually increase with the mixing of biomass burning smoke particles and higher water vapor concentrations when approaching the monsoon season. The retrieved ω0 and weighted mean radius of fine-mode aerosols from SMART–s showed positive correlations with the H2O (R=0.81 for ω0 at 330 nm and 0.56 for the volume-weighted mean radius), whereas the real part of the refractive index of fine-mode aerosol (nf) showed negative correlations (R=-0.61 at 330 nm), which suggest that aerosol aging processes including hygroscopic growth (e.g., humidification and cloud processing) can be a major factor affecting the temporal trends of aerosol optical properties. Retrieved nf and ω0 were closer to those of the water droplet (i.e., nf of about 1.33 and ω0 of about 1.0) under lower amounts of NO2 during the measurement period; considering that the NO2 amounts in the smoke may indicate the aging of the plume after emission due to its short lifetime, the tendency is also consistent with active hygroscopic processes of the aerosols over this area. Retrieved UV aerosol properties from SMART–s generally support the assumed smoke aerosol models (i.e., the spectral shape of aerosol absorption) used in NASA's current satellite algorithms, and their spectral ω0 retrievals from ground and satellites showed good agreements (R = 0.73–0.79). However, temporal and spectral variabilities in the aerosol absorption properties in the UV emphasize the importance of a realistic optical model of aerosols for further improvements in satellite retrievals.

Funder

National Aeronautics and Space Administration

National Institute of Environmental Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3