Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in large East African urban conurbations

Author:

Mazzeo Andrea,Burrow Michael,Quinn Andrew,Marais Eloise A.ORCID,Singh AjitORCID,Ng'ang'a David,Gatari Michael J.ORCID,Pope Francis D.ORCID

Abstract

Abstract. Urban conurbations of East Africa are affected by harmful levels of air pollution. The paucity of local air quality networks and the absence of the capacity to forecast air quality make difficult to quantify the real level of air pollution in this area. The CHIMERE chemistry transport model has been used along with the Weather Research and Forecasting (WRF) meteorological model to run high-spatial-resolution (2 × 2 km) simulations of hourly concentrations of particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) for three East African urban conurbations: Addis Ababa in Ethiopia, Nairobi in Kenya, and Kampala in Uganda. Two existing emission inventories were combined to test the performance of CHIMERE as an air quality model for a target monthly period in 2017, and the results were compared against observed data from urban, roadside, and rural sites. The results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observed values from urban, roadside, and rural environments. CHIMERE's performance as a tool for managing air quality was also assessed. The analysis demonstrated that, despite the absence of high-resolution data and up-to-date biogenic and anthropogenic emissions, the model was able to reproduce 66 %–99 % of the daily PM2.5 exceedances above the World Health Organization (WHO) 24 h mean PM2.5 guideline (25 µg m−3) in the three cities. An analysis of the 24 h average PM2.5 levels was also carried out for 17 constituencies in the vicinity of Nairobi. This showed that 47 % of the constituencies in the area exhibited a poor Air Quality Index for PM2.5 that was in the unhealthy category for human health, thereby exposing between 10 000 and 30 000 people per square kilometre to harmful levels of air contamination.

Funder

Department for International Development

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3