Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product

Author:

Fillmore David W.,Rutan David A.,Kato Seiji,Rose Fred G.,Caldwell Thomas E.

Abstract

Abstract. Aerosol optical depths (AODs) used for the Edition 4.1 Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1∘ (SYN1deg) product are evaluated. AODs are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations and assimilated by an aerosol transport model (the Model for Atmospheric Transport and Chemistry – MATCH). As a consequence, clear-sky AODs closely match with those derived from MODIS instruments. AODs under all-sky conditions are larger than AODs under clear-sky conditions, which is supported by ground-based AErosol RObotic NETwork (AERONET) observations. When all-sky MATCH AODs are compared with Modern-Era Retrospective analysis for Research and Applications (Version 2; MERRA-2) AODs, MATCH AODs are generally larger than MERRA-2 AODs, especially over convective regions (e.g., the Amazon, central Africa, and eastern Asia). This variation is largely due to the differing methods of assimilating the MODIS AOD data product and the use of quality flags in our assimilation. Including AODs with larger retrieval uncertainty makes AODs over the convective regions larger. When AODs are used for clear-sky irradiance computations and computed downward shortwave irradiances are compared with ground-based observations, the computed instantaneous irradiances are 1 %–2 % larger than observed irradiances. The comparison of top-of-atmosphere clear-sky irradiances with those derived from CERES observations suggests that AODs used for surface radiation observation sites are 0.01–0.03 larger, which is within the uncertainty of instantaneous MODIS AODs. However, the comparison with AERONET AODs suggests that AODs used for computations over desert sites are 0.08 larger. The cause of positive biases in downward shortwave irradiance and in AOD for the desert sites is possibly due to the dust particle size and distribution, as defined by the MATCH transport model, and the transfer of that information into the radiative transfer model.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3