Past anthropogenic land use change caused a regime shift of the fluvial response to Holocene climate change in the Chinese Loess Plateau

Author:

Chen Hao,Wang Xianyan,Yu Yanyan,Lu Huayu,Van Balen Ronald

Abstract

Abstract. The Wei River catchment in the southern part of the Chinese Loess Plateau (CLP) is one of the centers of the agricultural revolution in China. The area has experienced intense land use changes since ∼6000 BCE, which makes it an ideal place to study the response of fluvial systems to past anthropogenic land cover change (ALCC). We apply a numerical landscape evolution model that combines the Landlab landscape evolution model with an evapotranspiration model to investigate the direct and indirect effects of ALCC on hydrological and morphological processes in the Wei River catchment since the mid-Holocene. The results show that ALCC has not only led to changes in discharge and sediment load in the catchment but also affected their sensitivity to climate change. When the proportion of agricultural land area exceeded 50 % (around 1000 BCE), the sensitivity of discharge and sediment yield to climate change increased abruptly indicating a regime change in the fluvial catchment. This was associated with a large sediment pulse in the lower reaches. The model simulation results also show a link between human settlement, ALCC and floodplain development: changes in agricultural land use led to downstream sediment accumulation and floodplain development, which in turn resulted in further spatial expansion of agriculture and human settlement.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3