MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm

Author:

Limbacher James A.,Kahn Ralph A.ORCID,Friberg Mariel D.ORCID,Lee Jaehwa,Summers Tyler,Zhang Hai

Abstract

Abstract. For over 40 years, the Geostationary Operational Environmental Satellite (GOES) system has provided frequent snapshots of the Western Hemisphere. The advanced baseline imagers (ABIs) on the GOES-16, GOES-17, and GOES-18 platforms are the first GOES-series imagers that meet the precision requirements for high-quality, aerosol-related research. We present MAGARA, a Multi-Angle Geostationary Aerosol Retrieval Algorithm, that leverages multi-angle ABI imagery to exploit the differences in autocorrelation timescales between surface reflectance, aerosol type, and aerosol loading. MAGARA retrieves pixel-level (up to 1 km) aerosol loading and fine-mode fraction at up to the cadence of the measurements (10 min), fine- and coarse-mode aerosol particle properties at a daily cadence, and surface properties by combining the multi-angle radiances with robust surface characterization inherent to temporally tiled algorithms. We present three case studies, and because GOES-17 was not making observations for one case, we present this as a unique demonstration of the multi-angle algorithm using only a single ABI sensor. We also compare MAGARA retrievals of fine-mode (FM) aerosol optical depth (AOD), coarse-mode (CM) AOD, and single-scattering albedo (SSA) statistically, with coincident AErosol RObotic NETwork (AERONET) spectral deconvolution algorithm (SDA) and inversion retrievals for the same period, and against bias-corrected NOAA GOES-16 and GOES-17 retrieved 550 nm AOD. For MAGARA vs. coincident AERONET over-land 500 nm fine-mode fraction and AOD>0.3, MAE=0.031, RMSE=0.100, and r=0.902, indicating good sensitivity to fine-mode fraction over land, especially for smoky regions. For bias-corrected MAGARA vs. coincident AERONET spectral single-scattering albedo with MAGARA AOD>0.5 (n=116), MAE=0.010, RMSE=0.015, and the correlation is 0.87. MAGARA performs best in regions where surface reflectance varies over long timescales with minimal clouds. This represents a large portion of the western half of the United States, much of north-central Africa and the Middle East, some of central Asia, and much of Australia. For these regions, aerosol type and aerosol loading on timescales as short as 10 min could allow for novel research into aerosol–cloud interactions, improvements to air-quality modeling and forecasting, and tighter constraints on direct aerosol radiative forcing.

Funder

NASA Headquarters

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference57 articles.

1. ABI AOD ATBD: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for suspended matter/aerosol optical depth and aerosol size parameter, NOAA/NESDIS/STAR, Version 4.2, https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/docs/GOES-R_ABI_AOD_ATBD_V4.2_20180214.pdf (last access: 5 March 2021), 2018.

2. Baldassari, E.: Camp Fire death toll grows to 29, matching 1933 blaze as state's deadliest, East Bay Times, 11, https://www.presstelegram.com/2018/11/12/camp-fire-death- toll-grows-to-29-matching-1933-griffith-park-blaze-for-deadliest-in-california/ (last access: 9 January 2024), 12 November 2018.

3. Bian, Q., Kreidenweis, S., Chiu, J. C., Miller, S. D., Xu, X., Wang, J., Kahn, R. A., Limbacher, J. A., Remer, L. A., and Levy, R. C.: Constraining Aerosol Phase Function Using Dual-View Geostationary Satellites, J. Geophys. Res.-Atmos., 126, e2021JD035209, https://doi.org/10.1029/2021JD035209, 2021.

4. Cal Fire: Kincade Fire Incident, https://www.fire.ca.gov/incidents/2019/10/23/kincade-fire (last access: 4 September 2022), 2020.

5. Ceamanos, X., Six, B., Moparthy, S., Carrer, D., Georgeot, A., Gasteiger, J., Riedi, J., Attié, J.-L., Lyapustin, A., and Katsev, I.: Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data, Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, 2023.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3