Abstract
Abstract. Knowledge of water-surface velocities in rivers is useful for understanding a range of river processes. In cold regions, river-ice break up and the related downstream transport of ice debris is often the most important hydrological event of the year, leading to flood levels that typically exceed those for the open-water period and to strong consequences for river infrastructure and ecology. Accurate and complete surface-velocity fields on rivers have rarely been produced. Here, we track river ice debris over a time period of about one minute, which is the typical time lag between the two or more images that form a stereo data set in spaceborne, along-track optical stereo mapping. Using a series of nine stereo scenes from the US/Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard the NASA Terra spacecraft with 15 m image resolution, we measure the ice and water velocity field over a 620 km-long reach of the lower Lena River, Siberia, just above its entry into the Lena delta. Careful analysis and correction of higher-order image and sensor errors enables an accuracy of ice-debris velocities of up to 0.04 m s−1 from the ASTER data. Maximum ice or water speeds, respectively, reach up to 2.5 m s−1 at the time of data acquisition, 27 May 2011 (03:30 UTC). Speeds show clear along-stream undulations with a wavelength of about 21 km that agree well with variations in channel width and with the location of sand bars along the river reach studied. The methodology and results of this study could be valuable to a number of disciplines requiring detailed information about river flow, such as hydraulics, hydrology, river ecology and natural-hazard management.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference44 articles.
1. Abrams, M., Hook, S., and Ramachandran, B.: ASTER User Handbook. Version 2, Jet Propulsion Laboratory, California Institute of Technology, 2002.
2. ArcticRIMS: A regional, integrated hydrological monitoring system for the pan-Arctic land mass, http://rims.unh.edu/, 2013.
3. Beltaos, S. and Kääb, A.: River discharge during ice breackup from satellite imagery, Cold Reg. Sci. Technol., 98, 35–46, https://doi.org/10.1016/j.coldregions.2013.10.010, 2013.
4. Bjerklie, D. M., Dingman, S. L., Vorosmarty, C. J., Bolster, C. H., and Congalton, R. G.: Evaluating the potential for measuring river discharge from space, J. Hydrol., 278, 17–38, https://doi.org/10.1016/S0022-1694(03)00129-X, 2003.
5. Bjerklie, D. M., Moller, D., Smith, L. C., and Dingman, S. L.: Estimating discharge in rivers using remotely sensed hydraulic information, J. Hydrol., 309, 191–209, https://doi.org/10.1016/j.jhydrol.2004.11.022, 2005.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献