What can flux tracking teach us about water age distribution patterns and their temporal dynamics?

Author:

Hrachowitz M.ORCID,Savenije H.ORCID,Bogaard T. A.ORCID,Tetzlaff D.ORCID,Soulsby C.

Abstract

Abstract. The complex interactions of runoff generation processes underlying the hydrological response of streams remain not entirely understood at the catchment scale. Extensive research has demonstrated the utility of tracers for both inferring flow path distributions and constraining model parameterizations. While useful, the common use of linearity assumptions, i.e. time invariance and complete mixing, in these studies provides only partial understanding of actual process dynamics. Here we use long-term (<20 yr) precipitation, flow and tracer (chloride) data of three contrasting upland catchments in the Scottish Highlands to inform integrated conceptual models investigating different mixing assumptions. Using the models as diagnostic tools in a functional comparison, water and tracer fluxes were then tracked with the objective of exploring the differences between different water age distributions, such as flux and resident water age distributions, and characterizing the contrasting water age pattern of the dominant hydrological processes in the three study catchments to establish an improved understanding of the wetness-dependent temporal dynamics of these distributions. The results highlight the potential importance of partial mixing processes which can be dependent on the hydrological functioning of a catchment. Further, tracking tracer fluxes showed that the various components of a model can be characterized by fundamentally different water age distributions which may be highly sensitive to catchment wetness history, available storage, mixing mechanisms, flow path connectivity and the relative importance of the different hydrological processes involved. Flux tracking also revealed that, although negligible for simulating the runoff response, the omission of processes such as interception evaporation can result in considerably biased water age distributions. Finally, the modeling indicated that water age distributions in the three study catchments do have long, power-law tails, which are generated by the interplay of flow path connectivity, the relative importance of different flow paths as well as by the mixing mechanisms involved. In general this study highlights the potential of customized integrated conceptual models, based on multiple mixing assumptions, to infer system internal transport dynamics and their sensitivity to catchment wetness states.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3