Improving uncertainty estimation in urban hydrological modeling by statistically describing bias

Author:

Del Giudice D.,Honti M.,Scheidegger A.ORCID,Albert C.ORCID,Reichert P.ORCID,Rieckermann J.ORCID

Abstract

Abstract. Hydrodynamic models are useful tools for urban water management. Unfortunately, it is still challenging to obtain accurate results and plausible uncertainty estimates when using these models. In particular, with the currently applied statistical techniques, flow predictions are usually overconfident and biased. In this study, we present a flexible and relatively efficient methodology (i) to obtain more reliable hydrological simulations in terms of coverage of validation data by the uncertainty bands and (ii) to separate prediction uncertainty into its components. Our approach acknowledges that urban drainage predictions are biased. This is mostly due to input errors and structural deficits of the model. We address this issue by describing model bias in a Bayesian framework. The bias becomes an autoregressive term additional to white measurement noise, the only error type accounted for in traditional uncertainty analysis. To allow for bigger discrepancies during wet weather, we make the variance of bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically, we present a structured approach to select, among five variants, the optimal bias description for a given urban or natural case study. We tested the methodology in a small monitored stormwater system described with a parsimonious model. Our results clearly show that flow simulations are much more reliable when bias is accounted for than when it is neglected. Furthermore, our probabilistic predictions can discriminate between three uncertainty contributions: parametric uncertainty, bias, and measurement errors. In our case study, the best performing bias description is the output-dependent bias using a log-sinh transformation of data and model results. The limitations of the framework presented are some ambiguity due to the subjective choice of priors for bias parameters and its inability to address the causes of model discrepancies. Further research should focus on quantifying and reducing the causes of bias by improving the model structure and propagating input uncertainty.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference60 articles.

1. Aho, A., Kernighan, B., and Weinberger, P.: The AWK programming language, Addison-Wesley Longman Publishing Co., Inc., 1987.

2. Bareš, V., Stránský, D., Kopecká, J., and Fridrich, J.: Monitoring povodi a stokove sito Města Hostivice – lokalita Sadová [Monitoring a sewer watershed in Hostivice municipality – Sadová district], Tech. rep., Czech Technical University in Prague, 2010 (in Czech).

3. Bates, B. and Campbell, E.: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937–947, 2001.

4. Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C., and Tu, J.: A framework for validation of computer models, Technometrics, 49, 138–154, 2007.

5. Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3