Improving uncertainty estimation in urban hydrological modeling by statistically describing bias
-
Published:2013-10-28
Issue:10
Volume:17
Page:4209-4225
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Del Giudice D., Honti M., Scheidegger A.ORCID, Albert C.ORCID, Reichert P.ORCID, Rieckermann J.ORCID
Abstract
Abstract. Hydrodynamic models are useful tools for urban water management. Unfortunately, it is still challenging to obtain accurate results and plausible uncertainty estimates when using these models. In particular, with the currently applied statistical techniques, flow predictions are usually overconfident and biased. In this study, we present a flexible and relatively efficient methodology (i) to obtain more reliable hydrological simulations in terms of coverage of validation data by the uncertainty bands and (ii) to separate prediction uncertainty into its components. Our approach acknowledges that urban drainage predictions are biased. This is mostly due to input errors and structural deficits of the model. We address this issue by describing model bias in a Bayesian framework. The bias becomes an autoregressive term additional to white measurement noise, the only error type accounted for in traditional uncertainty analysis. To allow for bigger discrepancies during wet weather, we make the variance of bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically, we present a structured approach to select, among five variants, the optimal bias description for a given urban or natural case study. We tested the methodology in a small monitored stormwater system described with a parsimonious model. Our results clearly show that flow simulations are much more reliable when bias is accounted for than when it is neglected. Furthermore, our probabilistic predictions can discriminate between three uncertainty contributions: parametric uncertainty, bias, and measurement errors. In our case study, the best performing bias description is the output-dependent bias using a log-sinh transformation of data and model results. The limitations of the framework presented are some ambiguity due to the subjective choice of priors for bias parameters and its inability to address the causes of model discrepancies. Further research should focus on quantifying and reducing the causes of bias by improving the model structure and propagating input uncertainty.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference60 articles.
1. Aho, A., Kernighan, B., and Weinberger, P.: The AWK programming language, Addison-Wesley Longman Publishing Co., Inc., 1987. 2. Bareš, V., Stránský, D., Kopecká, J., and Fridrich, J.: Monitoring povodi a stokove sito Města Hostivice – lokalita Sadová [Monitoring a sewer watershed in Hostivice municipality – Sadová district], Tech. rep., Czech Technical University in Prague, 2010 (in Czech). 3. Bates, B. and Campbell, E.: A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937–947, 2001. 4. Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C., and Tu, J.: A framework for validation of computer models, Technometrics, 49, 138–154, 2007. 5. Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|