An efficient semi-distributed hillslope erosion model for the subhumid Ethiopian Highlands
-
Published:2013-03-08
Issue:3
Volume:17
Page:1051-1063
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Tilahun S. A.,Guzman C. D.,Zegeye A. D.,Engda T. A.,Collick A. S.,Rimmer A.,Steenhuis T. S.
Abstract
Abstract. Erosion modeling has been generally scaling up from plot scale but not based on landscape topographic position, which is a main variable in saturation excess runoff. In addition, predicting sediment loss in Africa has been hampered by using models developed in western countries and do not perform as well in the monsoon climate prevailing in most of the continent. The objective of this paper is to develop a simple erosion model that can be used in the Ethiopian Highlands in Africa. We base our sediment prediction on a simple distributed saturated excess hydrology model that predicts surface runoff from severely degraded lands and from bottom lands that become saturated during the rainy season and estimates interflow and baseflow from the remaining portions of the landscape. By developing an equation that relates surface runoff to sediment concentration generated from runoff source areas, assuming that baseflow and interflow are sediment-free, we were able to predict daily sediment concentrations from the Anjeni watershed with a Nash–Sutcliffe efficiency ranging from 0.64 to 0.78 using only two calibrated sediment parameters. Anjeni is a 113 ha watershed in the 17.4 million ha Blue Nile Basin in the Ethiopian Highlands. The discharge of the two watersheds was predicted with Nash–Sutcliffe efficiency values ranging from 0.80 to 0.93. The calibrated values in Anjeni for degraded (14%) and saturated (2%) runoff source area were in agreement with field evidence. The analysis suggests that identifying the runoff source areas and predicting the surface runoff correctly is an important step in predicting the sediment concentration.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference66 articles.
1. Bayabil, H. K., Tilahun, S. A., Collick, A. S., and Steenhuis, T. S.: Are runoff processes ecologically or topographically driven in the Ethiopian Highlands? The case of the Maybar, Ecohydrology, 3, 457–466, https://doi.org/10.1002/eco.170, 2010. 2. Betrie, G. D., Mohamed, Y. A., van Griensven, A., and Srinivasan, R.: Sediment management modelling in the Blue Nile Basin using SWAT model, Hydrol. Earth Syst. Sci., 15, 807–818, https://doi.org/10.5194/hess-15-807-2011, 2011. 3. Bewket, W. and Sterk, G.: Assessment of soil erosion in cultivated fields using a survey methodology for rills in Chemoga watershed, Ethiopia, Agr. Ecosyst. Environ., 97, 81–93, 2003. 4. Borga, M., Anagnostou, E. N., Bloeschl, G., and Creutin, J.-D.: Flash flood forecasting, warning and risk management: the HYDRATE project, Environ. Sci. Pol., 14, 834–844, https://doi.org/10.1016/j.envsci.2011.05.017, 2011. 5. Bosshart, U.: Catchment Discharge and Suspended Sediment Transport as Indicators of Physical Soil and Water Conservation in the Minchet Catchment, Anjeni Research Unit, Soil Conservation Research Report 40, University of Berne, Berne, Switzerland, 1997.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|