CityFlux perfluorocarbon tracer experiments
-
Published:2010-07-05
Issue:13
Volume:10
Page:5991-5997
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Petersson F. K.,Martin D.,White I. R.,Henshaw S. J.,Nickless G.,Longley I.,Percival C. J.,Gallagher M.,Shallcross D. E.
Abstract
Abstract. In June 2006, two perfluorocarbon tracer experiments were conducted in central Manchester UK as part of the CityFlux campaign. The main aim was to investigate vertical dispersion in an urban area during convective conditions, but dispersion mechanisms within the street network were also studied. Paired receptors were used in most cases where one receptor was located at ground level and one at roof level. One receptor was located on the roof of Portland Tower which is an 80 m high building in central Manchester. Source receptor distances in the two experiments varied between 120 and 600 m. The results reveal that maximum concentration was sometimes found at roof level rather than at ground level implying the effectiveness of convective forces on dispersion. The degree of vertical dispersion was found to be dependent on source receptor distance as well as on building height in proximity to the release site. Evidence of flow channelling in a street canyon was also found. Both a Gaussian profile and a street network model were applied and the results show that the urban topography may lead to highly effective flow channelling which therefore may be a very important dispersion mechanism should the right meteorological conditions prevail. The experimental results from this campaign have also been compared with a simple urban dispersion model that was developed during the DAPPLE framework and show good agreement with this. The results presented here are some of the first published regarding vertical dispersion. More tracer experiments are needed in order to further characterise vertical concentration profiles and their dependence on, for instance, atmospheric stability. The impact of urban topography on pollutant dispersion is important to focus on in future tracer experiments in order to improve performance of models as well as for our understanding of the relationship between air quality and public health.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference22 articles.
1. Arnold, S. J., ApSimon, H., Barlow, J., Belcher, S., Bell, M., Boddy, J. W., Britter, R., Cheng, R., Clark, R., Colville, R. N., Dimitoulopolou, S., Dobre, A., Greally, B., Kaur, S., Knights, A., Lawton, T, Makepeace, A., Martin, D., Neophytou, M., Neville, S., Niewenhuilsen, M., Nickless, G., Price, C. S., Robins, A., Shallcross, D., Simmonds, P., Smalley, R. J., Tate, J., Tomlin, A. S., Wang, H., and Walsh, P.: Introduction to the DAPPLE Air Pollution Project, Sci. Total Environ., 332, 139–153, 2004. 2. Barad, M. L. and Fuquay, J. J: The Green Glow Diffusion Program, Geophys. Res. Papers No 73, Vols I and II, Geophys Res. Dir., Bedford, Mass., 1961. 3. Britter, R. E. and Hanna, S. R.: Flow and Dispersion in Urban Areas, Annu. Rev. Fluid Mech., 35, 469–496, 2003. 4. Britter, R. E., Hanna, E. R., Briggs, G. A., and Robins, A.: Short-range vertical dispersion from a ground level source in a turbulent boundary layer, Atmos. Environ., 37, 3885–3894, 2003. 5. Cooke, K. M., Di Sabatino, S., Simmonds, P. G., Nickless, G., Britter, R. E., and Caton, F.: Tracers and dispersion of gaseous pollutants in an urban area. Birmingham tracer experiments, Natural Environment Research Council, Technical report, Project Ref : GST/02/1974, 2000.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|