Seasonally optimized calibrations improve low-cost sensor performance: long-term field evaluation of PurpleAir sensors in urban and rural India

Author:

Campmier Mark JosephORCID,Gingrich Jonathan,Singh Saumya,Baig Nisar,Gani ShahzadORCID,Upadhya Adithi,Agrawal PratyushORCID,Kushwaha Meenakshi,Mishra Harsh Raj,Pillarisetti Ajay,Vakacherla SreekanthORCID,Pathak Ravi Kant,Apte Joshua S.

Abstract

Abstract. Lower-cost air pollution sensors can fill critical air quality data gaps in India, which experiences very high fine particulate matter (PM2.5) air pollution but has sparse regulatory air monitoring. Challenges for low-cost PM2.5 sensors in India include high-aerosol mass concentrations and pronounced regional and seasonal gradients in aerosol composition. Here, we report on a detailed long-time performance evaluation of a popular sensor, the Purple Air PA-II, at multiple sites in India. We established three distinct sites in India across land use categories and population density extremes (in urban Delhi and rural Hamirpur in north India and urban Bengaluru in south India), where we collocated the PA-II model with reference beta attenuation monitors. We evaluated the performance of uncalibrated sensor data, and then developed, optimized, and evaluated calibration models using a comprehensive feature selection process with a view to reproducibility in the Indian context. We assessed the seasonal and spatial transferability of sensor calibration schemes, which is especially important in India because of the paucity of reference instrumentation. Without calibration, the PA-II was moderately correlated with the reference signal (R2 = 0.55–0.74) but was inaccurate (NRMSE ≥ 40 %). Relative to uncalibrated data, parsimonious annual calibration models improved the PurpleAir (PA) model performance at all sites (cross-validated NRMSE 20 %–30 %; R2 = 0.82–0.95), and greatly reduced seasonal and diurnal biases. Because aerosol properties and meteorology vary regionally, the form of these long-term models differed among our sites, suggesting that local calibrations are desirable when possible. Using a moving-window calibration, we found that using seasonally specific information improves performance relative to a static annual calibration model, while a short-term calibration model generally does not transfer reliably to other seasons. Overall, we find that the PA-II model can provide reliable PM2.5 data with better than ±25 % precision and accuracy when paired with a rigorous calibration scheme that accounts for seasonality and local aerosol composition.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3