Turbulence in a coastal environment: the case of Vindeby

Author:

Putri Rieska MawarniORCID,Cheynet EtienneORCID,Obhrai Charlotte,Jakobsen Jasna Bogunovic

Abstract

Abstract. The one-point and two-point power spectral densities of the wind velocity fluctuations are studied using the observations from an offshore mast at Vindeby Offshore Wind Farm, for a wide range of thermal stratifications of the atmosphere. A comparison with estimates from the FINO1 platform (North Sea) is made to identify shared spectral characteristics of turbulence between different offshore sites. The sonic anemometer measurement data at 6, 18, and 45 m a.m.s.l. (above mean sea level) are considered. These heights are lower than at the FINO1 platform, where the measurements were collected at heights between 40 and 80 m. Although the sonic anemometers are affected by transducer-flow distortion, the spectra of the along-wind velocity component are consistent with those from FINO1 when surface-layer scaling is used, for near-neutral and moderately diabatic conditions. The co-coherence of the along-wind component, estimated for vertical separations under near-neutral conditions, matches remarkably well with the results from the dataset at the FINO1 platform. These findings mark an important step toward more comprehensive coherence models for wind load calculation. The turbulence characteristics estimated from the present dataset are valuable for better understanding the structure of turbulence in the marine atmospheric boundary layer and are relevant for load estimations of offshore wind turbines. Yet, the datasets recorded at Vindeby and FINO1 cover only the lower part of the rotor of state-of-the-art offshore wind turbines. Further improvements in the characterisation of atmospheric turbulence for wind turbine design will require measurements at heights above 100 m a.m.s.l.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3