Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey

Author:

Leblans N. I. W.,Sigurdsson B. D.ORCID,Roefs P.,Thuys R.,Magnússon B.,Janssens I. A.

Abstract

Abstract. What happens during primary succession after the first colonizers have occupied a pristine surface largely depends on how they ameliorate living conditions for other species. For vascular plants the onset of soil development and associated increase in nutrient (mainly nitrogen; N) and water availability is especially important. Here, we report the relationship between N accumulation and biomass and ecosystem carbon (C) stocks in a 50-year-old volcanic island, Surtsey, Iceland, where N stocks are still exceptionally low. However, a 28-year-old seagull colony on the island provided nutrient-enriched areas, which enabled us to assess the relationship between N stock and biomass and ecosystem C stocks across a much larger range in N stock. Further, we compared areas on shallow and deep tephra sands as we expected that deep-rooted systems would be more efficient in retaining N. The sparsely vegetated area outside the colony had accumulated 0.7 kg N ha−1 yr−1, which was ca. 50–60% of the estimated N input rate from wet deposition. This approximates values for systems under low N input and bare dune habitats. The seagulls have added, on average, 47 kg N ha−1 yr−1, which induced a shift from belowground to aboveground in ecosystem N and C stocks and doubled the ecosystem N-use efficiency, determined as the ratio of biomass and C storage per unit N input. Soil depth did not significantly affect total N stocks, which suggests a high N retention potential. Both total ecosystem biomass and C stocks were strongly correlated with N stock inside the colony, which indicated the important role of N during the first steps of primary succession. Inside the colony, the ecosystem biomass C stocks (17–27 ton C ha−1) had reached normal values for grasslands, while the soil organic carbon (SOC) stocks (4–10 ton C ha−1 were only a fraction of normal grassland values. Thus, it will take a long time until the SOC stock reaches equilibrium with the current primary production, during which conditions for new colonists may change.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3