A history of the concept of time of concentration

Author:

Beven Keith J.ORCID

Abstract

Abstract. The concept of time of concentration in the analysis of catchment responses dates back over 150 years to the introduction of the rational method. Since then it has been used in a variety of ways in the formulation of both unit hydrograph and distributed catchment models. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology. While conceptually simple, this definition is, however, wrong when applied to catchment responses where, in terms of how surface and subsurface flows produce hydrographs, it is more correct to discuss and teach the concept based on celerities and time to equilibrium. While this has been recognized since the 1960s, some recent papers and texts remain confused over the definition and use of the time of concentration concept. The paper sets out the history of its use and clarifies its relationship with time to equilibrium but suggests that both terms are not really useful in explaining hydrological responses. An Appendix is included that quantifies the differences between the definitions of response times for subsurface and surface flows under simple assumptions that might be useful in teaching.

Funder

NERC Environmental Bioinformatics Centre

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference90 articles.

1. Almeida, I. K., Almeida, A. K., Anache, J. A. A., Steffen, J. L., and Sobrinho, T. A.: Estimation on time of concentration of overland flow in watersheds: a review, Geociências, 33, 661–671, 2014.

2. Aron, G., Ball, J. E., and Smith, T. A.: Fractal concept used in time-of-concentration estimates, J. Irrig. Drain. Eng., 117, 635–641, 1991.

3. Bedient, P. B. and Huber, W. C.: Hydrology and Floodplain Analysis, Addison-Wesley, Reading, Massachusetts, 1988.

4. Ben-Zvi, A.: The velocity assumption behind linear invariable watershed response models, in: Mathematical Models in Hydrology, 2, IAHS Publication No. 101, IAHS Press, Wallingford, UK, 758–761, 1974.

5. Berghuijs, W. R. and Allen, S. T.: Waters flowing out of systems are younger than the waters stored in those same systems, Hydrol. Process., 33, 3251–3254, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3