Nonstationary stochastic rain type generation: accounting for climate drivers

Author:

Benoit Lionel,Vrac Mathieu,Mariethoz Gregoire

Abstract

Abstract. At subdaily resolution, rain intensity exhibits a strong variability in space and time, which is favorably modeled using stochastic approaches. This strong variability is further enhanced because of the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection), which results in a multiplicity of space–time patterns embedded into rain fields and in turn leads to the nonstationarity of rain statistics. To account for this nonstationarity in the context of stochastic weather generators and therefore preserve the relationships between rainfall properties and climatic drivers, we propose to resort to rain type simulation. In this paper, we develop a new approach based on multiple-point statistics to simulate rain type time series conditional to meteorological covariates. The rain type simulation method is tested by a cross-validation procedure using a 17-year-long rain type time series defined over central Germany. Evaluation results indicate that the proposed approach successfully captures the relationships between rain types and meteorological covariates. This leads to a proper simulation of rain type occurrence, persistence and transitions. After validation, the proposed approach is applied to generate rain type time series conditional to meteorological covariates simulated by a regional climate model under an RCP8.5 (Representative Concentration Pathway) emission scenario. Results indicate that, by the end of the century, the distribution of rain types could be modified over the area of interest, with an increased frequency of convective- and frontal-like rains at the expense of more stratiform events.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference62 articles.

1. Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal de la société française de statistiques, 156, 101–113, 2015. a

2. Bárdossy, A. and Pegram, G. G. S.: Space-time conditional disaggregation of precipitation at high resolution via simulation, Water Resour. Res., 52, 920–937, https://doi.org/10.1002/2015WR018037, 2016. a

3. Bárdossy, A. and Plate, E. J.: Modelling daily rainfall using a semi-Markov representation of circulation pattern occurence, J. Hydrol., 122, 33–47, https://doi.org/10.1016/0022-1694(91)90170-M, 1991. a

4. Benoit, L.: Rain type data over Thuringia for the period 2001–2017, available at: https://github.com/LionelBenoit/Stochastic_Raintype_Generator/Raintype_data (last access: 27 May 2020), 2020a. a

5. Benoit, L.: Rain typing software, available at: https://github.com/LionelBenoit/Rain_typing (last access: 27 May 2020), 2020b. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3