Investigating unproductive water losses from irrigated agricultural crops in the humid tropics through analyses of stable isotopes of water

Author:

Mahindawansha AmaniORCID,Külls Christoph,Kraft PhilippORCID,Breuer LutzORCID

Abstract

Abstract. Reliable information on water flow dynamics and water losses via irrigation on irrigated agricultural fields is important to improve water management strategies. We investigated the effect of season (wet season and dry season), irrigation management (flooded and non-flooded), and crop diversification (wet rice, dry rice, and maize) on soil water flow dynamics and water losses via evaporation during plant growth. Soil water was extracted and analysed for the stable isotopes of water (δ2H and δ18O). The fraction of evaporation losses were determined using the Craig–Gordon equation. For dry rice and maize, water in shallow soil layers (0 to 0.2 m) was more isotopically enriched than in deeper soil layers (below 0.2 m). This effect was less pronounced for wet rice but still evident for the average values at both soil depths and seasons. Soil water losses due to evaporation decreased from 40 % at the beginning to 25 % towards the end of the dry season. The soil in maize fields showed stronger evaporation enrichment than in rice during that time. A greater water loss was encountered during the wet season, with 80 % at the beginning of the season and 60 % at its end. The isotopic enrichment of ponding surface water due to evaporation was reflected in the shallow soils of wet rice. It decreased towards the end of both growing seasons during the wet and the dry season. We finally discuss the most relevant soil water flow mechanisms, which we identified in our study to be those of matrix flow, preferential flow through desiccation cracks, and evaporation. Isotope data supported the fact that unproductive water losses via evaporation can be reduced by introducing dry seasonal crops to the crop rotation system.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3