Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem

Author:

Muñoz-Villers Lyssette Elena,Geris JosieORCID,Alvarado-Barrientos María Susana,Holwerda Friso,Dawson Todd

Abstract

Abstract. Globally, coffee has become one of the most sensitive commercial crops, being affected by climate change. Arabica coffee (Coffea arabica) grows in traditionally shaded agroforestry systems in tropical regions and accounts for ∼70 % of coffee production worldwide. Nevertheless, the interaction between plant and soil water sources in these coffee plantations remains poorly understood. To investigate the functional response of dominant shade tree species and coffee (C. arabica var. typica) plants to different soil water availability conditions, we conducted a study during near-normal and more pronounced dry seasons (2014 and 2017, respectively) and a wet season (2017) in a traditional coffee plantation in central Veracruz, Mexico. For the different periods, we specifically investigated the variations in water sources and root water uptake via MixSIAR mixing models that use δ18O and δ2H stable isotope composition of rainfall, plant xylem and soil water. To further increase our mechanistic understanding of root activity, the distribution of below-ground biomass and soil macronutrients was also examined and considered in the model as prior information. Results showed that, over the course of the two investigated dry seasons, all shade tree species (Lonchocarpus guatemalensis, Inga vera and Trema micrantha) relied, on average, on water sources from intermediate (>15 to 30 cm depth: 58± 18 % SD) and deep soil layers (>30 to 120 cm depth: 34±21 %), while coffee plants used much shallower water sources (<5 cm depth: 42±37 % and 5–15 cm depth: 52±35 %). In addition, in these same periods, coffee water uptake was influenced by antecedent precipitation, whereas trees showed little sensitiveness to antecedent wetness. Our findings also showed that during the wet season coffee plants substantially increased the use of near-surface water (+56 % from <5 cm depth), while shade trees extended the water acquisition to much shallower soil layers (+19 % from <15 cm depth) in comparison to drier periods. Despite the plasticity in root water uptake observed between canopy trees and coffee plants, a complementary use of soil water prevailed during the dry and wet seasons investigated. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3