Glacial-isostatic-adjustment strain rate–stress paradox in the Western Alps and impact on active faults and seismicity
-
Published:2023-10-18
Issue:10
Volume:14
Page:1067-1081
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Grosset Juliette, Mazzotti StéphaneORCID, Vernant PhilippeORCID
Abstract
Abstract. In many regions formerly glaciated during the Last Glacial Maximum (LGM), glacial isostatic adjustment (GIA) explains most of the measured uplift and deformation rates. GIA is also proposed as a key process contributing to fault activity and seismicity shortly after the LGM and potentially up to the present day. Here, we study the impact of GIA on present-day fault activity and seismicity in the Western Alps. We show that, in the upper crust, GIA induces horizontal compressive stress perturbations associated with horizontal extension rates. The latter agree with the observed geodetic strain rates and with the seismicity deformation patterns. Yet, in nearly all cases, the GIA stress perturbations tend to either inhibit fault slip or promote fault slip with the wrong mechanism compared to the seismicity deformation style. Thus, although GIA from the LGM explains a major part of the Western Alp geodetic strain rates, it does not drive or promote the observed seismicity (which must be driven by other processes). This apparent strain rate–stress paradox results from the gradual diminution over time of the finite shortening induced in the upper crust by the Würm ice cap load. A direct corollary of our results is that seismicity and seismic-hazard studies in the Western Alps cannot directly integrate geodetic velocities and strain rates but instead require detailed modeling of the GIA transient impact.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference83 articles.
1. Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial-Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures, Geochem. Geophy. Geosy., 22, e2021GC009853, https://doi.org/10.1029/2021GC009853, 2021. 2. Baize, S., Cushing, M., Lemeille, F., Gelis, C., Texier, D., Nicoud, G., and Schwenninger, J.-L.: Contribution to the seismic hazard assessment of a slow active fault, the Vuache fault in the southern Molasse basin (France), B. Soc. Geol. Fr., 182, 347–365, https://doi.org/10.2113/gssgfbull.182.4.347, 2011. 3. Battaglia, M., Murray, M. H., Serpelloni, E., and Bürgmann, R.: The Adriatic region: An independent microplate within the Africa-Eurasia collision zone: THE ADRIATIC REGION, Geophys. Res. Lett., 31, L09605, https://doi.org/10.1029/2004GL019723, 2004. 4. Bilau, A., Rolland, Y., Schwartz, S., Godeau, N., Guihou, A., Deschamps, P., Brigaud, B., Noret, A., Dumont, T., and Gautheron, C.: Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite, Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, 2021. 5. Billant, J., Hippolyte, J.-C., and Bellier, O.: Tectonic and geomorphic analysis of the Belledonne border fault and its extensions, Western Alps, Tectonophysics, 659, 31–52, https://doi.org/10.1016/j.tecto.2015.07.025, 2015.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|