Review article: the false–bottom ice

Author:

Alexandrov D. V.,Jouzel J.,Nizovtseva I.,Ryashko L. B.

Abstract

Abstract. Nansen from his observations in the Beaufort Sea published in 1897 noted that heat transfer from the fresh water (with a~temperature of 0 °C) to the arctic salt water (with a temperature of −1.6 °C) is the only source of ice accretion during the polar summer. This transfer mechanism, unusual at first sight, is responsible for the initiation and evolution of a false bottom ice, changing ice properties to a great extent and affecting various processes while interacting with the ocean and the atmosphere. The processes of false bottom ice growth from below (i.e. from the ocean to the atmosphere) become of prime importance in the era of global warming and climate change. In this review, we summarize the theoretical approaches, field and laboratory observations, conducted during more than 100 yr, in order to address the problem of false bottoms to a broad community of readers. We also discuss the recent modeling advances to which we have contributed. A "false bottom" is a thin layer of ice which forms in summer underneath the floe, where fresh water lies between the salt water and the ice. Such false bottoms represent the only significant source of ice growth in the Arctic during the spring-summer period. Their evolution influences the mass balance of the Arctic sea-ice cover, which is recognized as an indicator of climate change. However, the quantity, aerial extent and other properties of false bottoms are difficult to measure because coring under the surface melt ponds leads to direct mixing of surface and under-ice water. This explains why their aerial extent and overall volume is still not known despite the fact that the upper limit of the present-day estimate of the false bottom ice coverage is approximately half of the sea ice surface. The growth of false bottoms also leads to other important consequences for various physical, chemical and biological processes associated with their dynamics.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3