Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements

Author:

Chen B.,Huang J.,Minnis P.,Hu Y.,Yi Y.,Liu Z.,Zhang D.,Wang X.

Abstract

Abstract. The version 2 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) dust layer detection method, which is based only on lidar measurements, misclassified about 43% dust layers (mainly dense dust layers) as cloud layers over the Taklamakan Desert. To address this problem, a new method was developed by combining the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and passive Infrared Imaging Radiometer (IIR) measurements. This combined lidar and IR measurement (hereafter, CLIM) method uses the IIR tri-spectral IR brightness temperatures to discriminate between ice cloud and dense dust layers, and lidar measurements alone to detect thin dust and water cloud layers. The brightness temperature difference between 10.60 and 12.05 μm (BTD11−12) is typically negative for dense dust and generally positive for ice cloud, but it varies from negative to positive for thin dust layers, which the CALIPSO lidar correctly identifies. Results show that the CLIM method could significantly reduce misclassification rates to as low as ~7% for the active dust season of spring 2008 over the Taklamakan Desert. The CLIM method also revealed 18% more dust layers having greatly intensified backscatter between 1.8 and 4 km altitude over the source region compared to the CALIPSO version 2 data. These results allow a more accurate assessment of the effect of dust on climate.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference46 articles.

1. Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102(D14), https://doi.org/10.1029/96JD03066, 17069–17079, 1997.

2. Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.

3. Chen, Y., Mao, X., Huang, J., Zhang, H., Tang, Q., Pan, H., and Wang, C.: Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution, China Environ. Sci., 29(5), 449–454, 2009.

4. Chen, W., Dong, Z., Yang, Z., Han, Z., Zhang, J., Zhang, M.: The threshold wind velocity in the Taklamakan Desert, Acta Geographica Sinica, 7, 361–367, 1995.

5. Darmenov, A. and Sokolik, I. N.: Identifying the regional thermal-IR radiative signature of mineral dust with MODIS, Geophys. Res. Lett., 32, L16803, https://doi.org/10.1029/2005GL023092, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3