The uncertainty of flood frequency analyses in hydrodynamic model simulations
-
Published:2021-03-23
Issue:3
Volume:21
Page:1071-1085
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Zhou XudongORCID, Ma Wenchao, Echizenya Wataru, Yamazaki Dai
Abstract
Abstract. Assessing the risk of a historical-level flood is essential for regional flood protection and resilience establishment. However, due to the limited spatiotemporal coverage of observations, the impact assessment relies on model simulations and is thus subject to uncertainties from cascade physical processes. This study assesses the flood hazard map with uncertainties subject to different combinations of runoff inputs, variables for flood frequency analysis and fitting distributions based on estimations by the CaMa-Flood global hydrodynamic model. Our results show that deviation in the runoff inputs is the most influential source of uncertainties in the estimated flooded water depth and inundation area, contributing more than 80 % of the total uncertainties investigated in this study. Global and regional inundation maps for floods with 1-in-100 year return periods show large uncertainty values but small uncertainty ratios for river channels and lakes, while the opposite results are found for dry zones and mountainous regions. This uncertainty is a result of increasing variation at tails among various fitting distributions. In addition, the uncertainty between selected variables is limited but increases from the regular period to the rarer floods, both for the water depth at points and for inundation area over regions. The uncertainties in inundation area also lead to uncertainties in estimating the population and economy exposure to the floods. In total, inundation accounts for 9.1 % [8.1 %–10.3 %] of the land area for a 1-in-100 year flood, leading to 13.4 % [12.1 %–15 %] of population exposure and 13.1 % [11.8 %–14.7 %] of economic exposure for the globe. The flood exposure and uncertainties vary by continent and the results in Africa have the largest uncertainty, probably due to the limited observations to constrain runoff simulations, indicating a necessity to improve the performance of different hydrological models especially for data-limited regions.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference45 articles.
1. Aerts, J. P. M., Uhlemann-Elmer, S., Eilander, D., and Ward, P. J.: Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study, Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, 2020. a 2. Akaike, H.: A new look at the statistical model identification, IEEE
T Automat. Contr., 19, 716–723, 1974. a 3. Alvisi, S. and Franchini, M.: A grey-based method for evaluating the effects
of rating curve uncertainty on frequency analysis of annual maxima, J. Hydroinform., 15, 194–210, https://doi.org/10.2166/hydro.2012.127, 2013. a 4. Bales, J. D. and Wagner, C. R.: Sources of uncertainty in flood inundation
maps, J. Flood Risk Manag., 2, 139–147,
https://doi.org/10.1111/j.1753-318X.2009.01029.x, 2009. a 5. Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M.,
Sampson, C. C., Yamazaki, D., Ward, P. J., Rudari, R., Pappenberger, F.,
Dottori, F., Salamon, P., and Winsemius, H. C.: A first collective
validation of global fluvial flood models for major floods in Nigeria and
Mozambique, Environ. Res. Lett., 13, 104007,
https://doi.org/10.1088/1748-9326/aae014, 2018. a
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|