Towards using state-of-the-art climate models to help constrain estimates of unprecedented UK storm surges

Author:

Howard TomORCID,Williams Simon David Paul

Abstract

Abstract. Our ability to quantify the likelihood of present-day extreme sea level (ESL) events is limited by the length of tide gauge records around the UK, and this results in substantial uncertainties in return level curves at many sites. In this work, we explore the potential for a state-of-the-art climate model, HadGEM3-GC3, to help refine our understanding of present-day coastal flood risk associated with extreme storm surges, which are the dominant driver of ESL events for the UK and wider European shelf seas. We use a 483-year present-day control simulation from HadGEM3-GC3-MM (1/4∘ ocean, approx. 60 km atmosphere in mid-latitudes) to drive a north-west European shelf seas model and generate a new dataset of simulated UK storm surges. The variable analysed is the skew surge (the difference between the high water level and the predicted astronomical high tide), which is widely used in analysis of storm surge events. The modelling system can simulate skew surge events comparable to the catastrophic 1953 North Sea storm surge, which resulted in widespread flooding, evacuation of 32 000 people, and hundreds of fatalities across the UK alone, along with many hundreds more in mainland Europe. Our model simulations show good agreement with an independent re-analysis of the 1953 surge event at the mouth of the river Thames. For that site, we also revisit the assumption of skew surge and tide independence. Our model results suggest that at that site for the most extreme surges, tide–surge interaction significantly attenuates extreme skew surges on a spring tide compared to a neap tide. Around the UK coastline, the extreme tail shape parameters diagnosed from our simulation correlate very well (Pearson's r greater than 0.85), in terms of spatial variability, with those used in the UK government's current guidance (which are diagnosed from tide gauge observations), but ours have smaller uncertainties. Despite the strong correlation, our diagnosed shape parameters are biased low relative to the current guidance. This bias is also seen when we replace HadGEM3-GC3-MM with a reanalysis, so we conclude that the bias is likely associated with limitations in the shelf sea model used here. Overall, the work suggests that climate model simulations may prove useful as an additional line of evidence to inform assessments of present-day coastal flood risk.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3