Beachgoers' ability to identify rip currents at a beach in situ

Author:

Pitman Sebastian J.ORCID,Thompson Katie,Hart Deirdre E.ORCID,Moran Kevin,Gallop Shari L.,Brander Robert W.,Wooler Adam

Abstract

Abstract. Rip currents (“rips”) are the leading cause of drowning on surf beaches worldwide. A major contributing factor is that many beachgoers are unable to identify rip currents. Previous research has attempted to quantify beachgoers' rip identification ability using photographs of rip currents without identifying whether this usefully translates into an ability to identify a rip current in situ at the beach. This study is the first to compare beachgoers ability to identify rip currents in photographs and in situ at a beach in New Zealand (Muriwai Beach) where a channel rip current was present. Only 22 % of respondents were able to identify the in situ rip current. The highest rates of success were for males (33 %), New Zealand residents (25 %), and local beach users (29 %). Of all respondents who were successful at identifying the rip current in situ, 62 % were active surfers/bodyboarders, and 28 % were active beach swimmers. Of the respondents who were able to identify a rip current in two photographs, only 34 % were able to translate this into a successful in situ rip identification, which suggests that the ability to identify rip currents by beachgoers is worse than reported by previous studies involving photographs. This study highlights the difficulty of successfully identifying a rip current in reality and that photographs are not necessarily a useful means of teaching individuals to identify rip currents. It advocates for the use of more immersive and realistic education strategies, such as the use of virtual reality headsets showing moving imagery (videos) of rip currents in order to improve rip identification ability.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3