Quantifying location error to define uncertainty in volcanic mass flow hazard simulations
-
Published:2021-08-20
Issue:8
Volume:21
Page:2447-2460
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Mead Stuart R.ORCID, Procter Jonathan, Kereszturi GaborORCID
Abstract
Abstract. The use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed (“actual”) map-cell values to evaluate the performance of a model.
However, these comparisons conflate location and quantification errors,
neglecting possible spatial autocorrelation of evaluated errors. As a
result, model performance assessments typically yield moderate accuracy
values. In this paper, similarly moderate accuracy values were found in a
performance assessment of three depth-averaged numerical models using the
2012 debris avalanche from the Upper Te Maari crater, Tongariro Volcano, as a benchmark. To provide a fairer assessment of performance and evaluate
spatial covariance of errors, we use a fuzzy set approach to indicate the
proximity of similarly valued map cells. This “fuzzification” of simulated results yields improvements in targeted performance metrics relative to a length scale parameter at the expense of decreases in opposing metrics (e.g. fewer false negatives result in more false positives) and a reduction in resolution. The use of this approach to generate hazard zones incorporating the identified uncertainty and associated trade-offs is demonstrated and indicates a potential use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision-making from simulated data.
Funder
Natural Hazards Research Platform
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference61 articles.
1. Aguilera, E., Pareschi, M. T., Rosi, M., and Zanchetta, G.: Risk from Lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador), Nat. Hazards, 33, 161–189, https://doi.org/10.1023/B:NHAZ.0000037037.03155.23, 2004. 2. Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton,
S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P.,
Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B.
D., and Andreassian, V.: Characterising performance of environmental models,
Environ. Model. Softw., 40, 1–20, https://doi.org/10.1016/j.envsoft.2012.09.011, 2013. 3. Calder, E., Wagner, K., and Ogburn, S. E.: Volcanic hazard maps, in: Global
Volcanic Hazards and Risk, edited by: Loughlin, S. C., Sparks, R. S. J., Brown, S. K., Jenkins, S. F., and Vye-Brown, C., Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9781316276273.022, 2015. 4. Charbonnier, S. J., Germa, A., Connor, C. B., Gertisser, R., Preece, K., Komorowski, J. C., Lavigne, F., Dixon, T., and Connor, L.: Evaluation of the
impact of the 2010 pyroclastic density currents at Merapi volcano from
high-resolution satellite imagery, field investigations and numerical
simulations, J. Volcanol. Geoth. Res., 261, 295–315,
https://doi.org/10.1016/j.jvolgeores.2012.12.021, 2013. 5. Charbonnier, S. J., Connor, C. B., Connor, L. J., Sheridan, M. F., Oliva Hernández, J. P., and Richardson, J. A.: Modeling the October 2005
lahars at Panabaj (Guatemala), Bull. Volcanol., 80, 4, https://doi.org/10.1007/s00445-017-1169-x, 2017.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|