Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal

Author:

Meena Sansar RajORCID,Albrecht FlorianORCID,Hölbling DanielORCID,Ghorbanzadeh Omid,Blaschke ThomasORCID

Abstract

Abstract. Comprehensive and sustainable landslide risk management, including the identification of areas susceptible to landslides, requires responsible organisations to collaborate efficiently. Landslide risk management efforts are often made after major triggering events, such as hazard mitigation after the 2015 Gorkha earthquake in Nepal. There is also a lack of knowledge sharing and collaboration among stakeholders to cope with major disaster events, in addition to a lack of efficiency and continuity. There should be a system to allow for landslide information to be easily updated after an event. For a variety of users of landslide information in Nepal, the availability and extraction of landslide data from a common database are a vital requirement. In this study, we investigate the requirements to propose a concept for a web-based Nepalese landslide information system (NELIS) that provides users with a platform to share information about landslide events to strengthen collaboration. The system will be defined as a web GIS (geographic information system) that supports responsible organisations in addressing and managing different user requirements of people working with landslides, thereby improving the current state of landslide hazard and risk management in Nepal. The overall aim of this study is to propose a conceptual framework and design of NELIS. A system like NELIS could benefit stakeholders involved in data collection and landslide risk management in their efforts to report and provide landslide information. Moreover, such a system would allow for detailed and structured landslide documentation and consequently provide valuable information regarding susceptibility and hazard and risk mapping. For the reporting of landslides directly to the system, a web portal is proposed. Based on field surveys, a literature review and stakeholder interviews, a structure of the landslide database and a conceptual framework for the NELIS platform are proposed.

Funder

Austrian Science Fund

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Albrecht, F., Hölbling, D., Weinke, E., and Eisank, C.: User requirements for an Earth Observation (EO)-based landslide information web service, Landslides and Engineered Slopes, in: Experience, Theory and Practice, CRC Press, London, 301–308, 2016.

2. Bhandari, D. and Hodder, C.: Learning from Nepal NRA to inform the National Disaster Risk Reduction and Management Authority, Oxford Policy Management, Kathmandu, 2019.

3. Bisri, M. B. F. and Beniya, S.: Analysing the national disaster response framework and inter-organisational network of the 2015 Nepal/Gorkha earthquake, Procedia Eng., 159, 19–26, 2016.

4. Carr, J. A.: Pre-disaster integration of community emergency response teams within local emergency management systems, North Dakota State University, Fargo, North Dakota, 2014.

5. Centre for Research on the Epidemiology of Disasters – CRED, available at: http://www.emdat.be/about (last access: 15 December 2020), 2018.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3