An inventory of Alpine drought impact reports to explore past droughts in a mountain region

Author:

Stephan RuthORCID,Erfurt MathildeORCID,Terzi StefanoORCID,Žun Maja,Kristan Boštjan,Haslinger KlausORCID,Stahl KerstinORCID

Abstract

Abstract. Drought affects the European Alpine mountain region, despite a humid climate. Droughts' damaging character in the past and increasing probability in future projections call for an understanding of drought impacts in the mountain regions. The European Drought Impact report Inventory (EDII) collects text reports on negative drought impacts. This study presents a considerably updated EDII focusing on the Alpine region. This first version release of an Alpine Drought Impact report Inventory (EDIIALPS) classifies impact reports into categories covering various affected sectors and enables comparisons of the drought impact characteristics. We analysed the distribution of reported impacts on the spatial, temporal and seasonal scale and by drought type for soil moisture drought and hydrological drought. For the spatial analysis, we compared the impact data located in the Alpine region to the whole of Europe. Furthermore, we compared impact data between different climatic and altitudinal domains (the northern region vs. the southern region and the pre-Alpine region vs. the high-altitude region) and between the Alpine countries. Compared to the whole of Europe, in the Alpine region agriculture and livestock farming impacts are even more frequently reported, especially in the southern region. Public water supply is the second most relevant sector but overall less prominent compared to Europe, especially in spring when snowmelt mitigates water shortages. Impacts occur mostly in summer and early autumn, with a delay between those impacts initiated by soil moisture and those initiated by hydrological drought. The high-altitude region shows this delay the strongest. From 1975 to 2020, the number of archived reports increases, with substantially more impacts noted during the drought events of 1976, 2003, 2015 and 2018. Moreover, reported impacts diversify from agricultural dominance to multi-faceted impact types covering forestry, water quality, industry and so forth. Though EDIIALPS is biased by reporting behaviour, the region-specific results of negative drought impacts across the water-rich European mountain region demonstrate the need to move from emergency response to prevention and preparedness actions. These may be guided by EDIIALPS' insights to regional patterns, seasons and drought types.

Funder

Interreg

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in winter tourism, Climate change in the European Alps: Adapting winter tourism and natural hazards management, OECD Publishing, Paris, 25–58, 2007. a

2. Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, 2015. a

3. Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.: A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016. a, b, c

4. Blauhut, V., Stahl, K., and Kohn, I. (Eds.): The dynamics of vulnerability to drought from an impact perspective, in: Drought: Research and Science-Policy Interfacing, edited by: Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H. A. J., CRC Press, Lodon, 2015. a

5. Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., de Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016. a

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3