Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory

Author:

Li Huijun,Zhu LinORCID,Guo Gaoxuan,Zhang Yan,Dai Zhenxue,Li Xiaojuan,Chang Linzhen,Teatini PietroORCID

Abstract

Abstract. Land subsidence caused by groundwater overpumping threatens the sustainable development in Beijing. Hazard assessments of land subsidence can provide early warning information to improve prevention measures. However, uncertainty and fuzziness are the major issues during hazard assessments of land subsidence. We propose a method that integrates fuzzy set theory and weighted Bayesian model (FWBM) to evaluate the hazard probability of land subsidence measured by Interferometric Synthetic Aperture Radar (InSAR) technology. The model is structured as a directed acyclic graph. The hazard probability distribution of each factor triggering land subsidence is determined using Bayes' theorem. Fuzzification of the factor significance reduces the ambiguity of the relationship between the factors and subsidence. The probability of land subsidence hazard under multiple factors is then calculated with the FWBM. The subsidence time series obtained by InSAR is used to infer the updated posterior probability. The upper and middle parts of the Chaobai River alluvial fan are taken as a case-study site, which locates the first large-scale emergency groundwater resource region in the Beijing plain. The results show that rates of groundwater level decrease more than 1 m yr−1 in the confined and unconfined aquifers, with cumulative thicknesses of the compressible sediments between 160 and 170 m and Quaternary thicknesses between 400 and 500 m, yielding maximum hazard probabilities of 0.65, 0.68, 0.32, and 0.35, respectively. The overall hazard probability of land subsidence in the study area decreased from 51.3 % to 28.3 % between 2003 and 2017 due to lower rates of groundwater level decrease. This study provides useful insights for decision makers to select different approaches for land subsidence prevention.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3