Uncertainty in Satellite estimate of Global Mean Sea Level changes, trend and acceleration

Author:

Ablain MichaëlORCID,Meyssignac BenoitORCID,Zawadzki Lionel,Jugier Rémi,Ribes AurélienORCID,Cazenave Anny,Picot Nicolas

Abstract

Abstract. Satellite altimetry missions now provide more than 25 years of accurate, continuous and quasi-global measurements of sea level along the reference ground track of TOPEX/Poseidon. These measurements are used by different groups to build the Global Mean Sea Level (GMSL) record, an essential climate change indicator. Estimating a realistic uncertainty of the GMSL record is of crucial importance for climate studies such as estimating precisely the current rate and acceleration of sea level, analyzing the closure of the sea level budget, understanding the causes of sea level rise, detecting and attributing the response of sea level to anthropogenic activity, or estimating the Earth energy imbalance. (Ablain et al., 2015) estimated the uncertainty of the GMSL trend over the period 1993–2014 by thoroughly analyzing the error budget of the satellite altimeters and showed that it amounts to ±0.5 mm/yr (90 % confidence level). In this study, we extend (Ablain et al., 2015) analysis by providing a comprehensive description of the uncertainties in the satellite GMSL record. We analyse 25 years of satellite altimetry data and estimate for the first time the error variance-covariance matrix for the GMSL record with a time resolution of 10 days. Three types of errors are modelled (drifts, biases, noise) and combined together to derive a realistic estimate of the GMSL error variance-covariance matrix. From the error variance-covariance matrix we derive a 90 % confidence envelop of the GMSL record on a 10-day basis. Then we use a least square approach and the error variance-covariance matrix to estimate the GMSL trend and acceleration uncertainties over any time periods of 5 years and longer in between October 1992 and December 2017. Over 1993–2017 we find a GMSL trend of 3.35 ± 0.4 mm/yr within a 90 % Confidence Level (CL) and a GMSL acceleration of 0.12 ± 0.07 mm/yr2 (90 % CL). This is in agreement (within error bars) with previous studies. The full GMSL error variance-covariance matrix is freely available online: https://doi.org/10.17882/58344 (Ablain et al., 2018).

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3