Quantification and mitigation of the impact of scene inhomogeneity on Sentinel-4 UVN UV-VIS retrievals

Author:

Noël S.,Bramstedt K.,Bovensmann H.,Gerilowski K.,Burrows J. P.,Standfuss C.,Dufour E.,Veihelmann B.

Abstract

Abstract. The quality of trace gas products derived from measurements of a space-borne imaging spectrometer is affected by the inhomogeneity of the illumination of the instrument slit and thus by the heterogeneity of the observed scene. This paper aims to quantify this effect and summarise findings on how to mitigate the impact of inhomogeneous slit illumination on tropospheric O3, NO2, SO2 and HCHO columns derived from measurements of the Sentinel-4 UVN imaging spectrometer. For this purpose, spectra for inhomogeneous ground scenes have been simulated based on a combination of a radiative transfer model and spatially high resolved MODIS (Moderate Resolution Imaging Spectroradiometer) data. The resulting errors on tropospheric O3, NO2, SO2 and HCHO columns derived from these spectra have been determined via an optimal estimation approach. We conclude that inhomogeneous illumination results in significant errors in the data products if the natural inhomogeneity of the observed scenes are not accounted for. O3 columns are less affected than the other data products; largest errors occur for NO2 (mean absolute errors about 5%, maximum error exceeding 50%, standard deviation of the errors about 8%). These errors may be significantly reduced (by factors up to about 10) by an appropriate wavelength calibration applied individually to each Earthshine radiance spectrum. With wavelength calibration the estimated mean absolute errors due to inhomogeneity are for all gases well below 1%; standard deviations of the errors are 1.5% or lower; maximum errors are about 10% for NO2 and around 5% for the other gases.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference15 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3