A comparison of measured HONO uptake and release with calculated source strengths in a heterogeneous forest environment

Author:

Sörgel M.ORCID,Trebs I.,Wu D.ORCID,Held A.

Abstract

Abstract. Vertical mixing ratio profiles of nitrous acid (HONO) were measured in a clearing and on the forest floor in a rural forest environment. For the forest floor, HONO was found to predominantly deposit, whereas for the clearing, net deposition dominated only during nighttime and net emissions were observed during daytime. For selected days, net fluxes of HONO were calculated from the measured profiles using the aerodynamic gradient method. The emission fluxes were in the range of 0.02 to 0.07 nmol m−2 s−1 and thus were in the lower range of previous observations. These fluxes were compared to the strengths of postulated HONO sources. Laboratory measurements of different soil samples from both sites revealed an upper limit for soil biogenic HONO emission fluxes of 0.025 nmol m−2 s−1. HONO formation by light-induced NO2 conversion was calculated to be below 0.03 nmol m−2 s−1 for the investigated days, which is comparable to the potential soil fluxes. Due to light saturation at low irradiance, this reaction pathway was largely found to be independent of light intensity, i.e. it was only dependent on ambient NO2. We used three different approaches based on measured leaf nitrate loadings for calculating HONO formation from HNO3 photolysis. While the first two approaches based on empirical HONO formation rates yielded values in the same order of magnitude as the estimated fluxes, the third approach based on available kinetic data of the postulated pathway failed to produce noticeable amounts of HONO. Estimates based on reported cross sections of adsorbed HNO3 indicate that the lifetime of adsorbed HNO3 was only about 15 min, which would imply a substantial renoxification. Although the photolysis of HNO3 was significantly enhanced at the surface, the subsequent light-induced conversion of the photolysis product NO2 did not produce considerable amounts of HONO. Consequently, this reaction might occur via an alternative mechanism. By explicitly calculating HONO formation based on available kinetic data and simple parameterizations, we showed that (a) for low NOx the light-induced conversion of NO2 on humic acids is already light saturated by the early morning, (b) HONO formation from photolysis of adsorbed HNO3 appears to proceed via an alternative mechanism and (c) estimates of HONO emissions from soil are very sensitive to mass transfer and acidic soils do not necessarily favour HONO emissions.

Funder

Max-Planck-Gesellschaft

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3