Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel

Author:

Tarasov P. E.,Bezrukova E. V.,Krivonogov S. K.

Abstract

Abstract. In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47´ N, 108°07´ E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr=1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~−38°C) and July (~12°C) temperatures and annual precipitation (~270–300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8–14.7 kyr BP, during the Allerød Interstadial between 13.3–12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw~17–18°C, Tc~−19°C, Pann~500–550 mm) that occurred ca. 10.8–7.3 kyr BP. During this time interval woody vegetation covered more than 50% of the area within a 21×21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7–6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3