Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

Author:

Li F.ORCID,Bond-Lamberty B.,Levis S.

Abstract

Abstract. Fire is the primary form of terrestrial ecosystem disturbance on a global scale. It affects the net carbon balance of terrestrial ecosystems by emitting carbon directly and immediately into the atmosphere from biomass burning (the fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (the fire indirect effect). Here, we provide the first quantitative assessment of the impact of fire on the net carbon balance of global terrestrial ecosystems during the 20th century, and investigate the roles of fire's direct and indirect effects. This is done by quantifying the difference between the 20th century fire-on and fire-off simulations with the NCAR Community Land Model CLM4.5 (prescribed vegetation cover and uncoupled from the atmospheric model) as a model platform. Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C yr−1 averaged across the 20th century, as a result of the fire direct effect (1.9 Pg C yr−1) partly offset by the indirect effect (−0.9 Pg C yr−1). Post-fire regions generally experience decreased carbon gains, which is significant over tropical savannas and some North American and East Asian forests. This decrease is due to the direct effect usually exceeding the indirect effect, while they have similar spatial patterns and opposite sign. The effect of fire on the net carbon balance significantly declines until ∼1970 with a trend of 8 Tg C yr−1 due to an increasing indirect effect, and increases subsequently with a trend of 18 Tg C yr−1 due to an increasing direct effect. These results help constrain the global-scale dynamics of fire and the terrestrial carbon cycle.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3