Evaluation of six geothermal heat flux maps for the Antarctic Lambert–Amery glacial system
-
Published:2022-09-08
Issue:9
Volume:16
Page:3619-3633
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Kang Haoran, Zhao Liyun, Wolovick MichaelORCID, Moore John C.
Abstract
Abstract. Basal thermal conditions play an important role in ice sheet dynamics, and they are sensitive to geothermal heat flux (GHF). Here we estimate the basal thermal conditions, including basal temperature, basal melt rate, and friction heat underneath the Lambert–Amery Glacier system in eastern Antarctica, using a combination of a forward model and an inversion from a 3D ice flow model. We assess the sensitivity and uncertainty of basal thermal conditions using six different GHF maps. We evaluate the modelled results using all observed subglacial lakes. The different GHF maps lead to large differences in simulated spatial patterns of temperate basal conditions. The two recent GHF fields inverted from aerial geomagnetic observations have the highest GHF, produce the largest warm-based area, and match the observed distribution of subglacial lakes better than the other GHFs. The modelled basal melt rate reaches 10 to hundreds of millimetres per year locally in the Lambert, Lepekhin, and Kronshtadtskiy glaciers feeding the Amery Ice Shelf and ranges from 0–5 mm yr−1 on the temperate base of the vast inland region.
Funder
National Key Research and Development Program of China National Natural Science Foundation of China State Key Laboratory of Earth Surface Processes and Resource Ecology
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference56 articles.
1. An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y.,
Maggi, A., and Lévêque, J.: Temperature, lithosphere-asthenosphere
boundary, and heat flux beneath the Antarctic Plate inferred from seismic
velocities, J. Geophys. Res.-Sol. Ea., 120, 359–383, https://doi.org/10.1002/2015JB011917, 2015 (data available at: http://www.seismolab.org/model/antarctica/lithosphere/AN1-HF.tar.gz, last access: 5 August 2022). 2. Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G. Antarctic snow
accumulation mapped using polarization of 4.3-cm wavelength microwave
emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006 3. Budd, W. F., Warner, R. C., Jacka, T., Li, J., and Treverrow, A.: Ice flow
relations for stress and strain-rate components from combined shear and
compression laboratory experiments, J. Glaciol., 59, 374–392, https://doi.org/10.3189/2013JoG12J106, 2013. 4. Colgan, W., MacGregor, J. A., Mankoff, K. D., Haagenson, R., Rajaram, H.,
Martos, Y. M., Morlighem, M., Fahnestock, M. A., and Kjeldsen, K. K.:
Topographic correction of geothermal heat flux in Greenland and Antarctica.
J. Geophys. Res.-Earth, 126, e2020JF005598, https://doi.org/10.1029/2020JF005598, 2021. 5. Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, fourth
edition, Elsevier, Burlington, ISBN 978-0-12-369461-4, 2010.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|