Topology and spatial-pressure-distribution reconstruction of an englacial channel

Author:

Piho Laura,Alexander AndreasORCID,Kruusmaa Maarja

Abstract

Abstract. Information about glacier hydrology is important for understanding glacier and ice sheet dynamics. However, our knowledge about water pathways and pressure remains limited, as in situ observations are sparse and methods for direct area-wide observations are limited due to the extreme and hard-to-access nature of the environment. In this paper, we present a method that allows for in situ data collection in englacial channels using sensing drifters. Furthermore, we demonstrate a model that takes the collected data and reconstructs the planar subsurface water flow paths providing spatial reference to the continuous water pressure measurements. We showcase this method by reconstructing the 2D topology and the water pressure distribution of a free-flowing englacial channel in Austre Brøggerbreen (Svalbard). The approach uses inertial measurements from submersible sensing drifters and reconstructs the water flow path between given start and end coordinates. Validation of the method was done on a separate supraglacial channel, showing an average error of 3.9 m and the total channel length error of 29 m (6.5 %). At the englacial channel, the average error is 12.1 m; the length error is 107 m (11.6 %); and the water pressure standard deviation is 3.4 hPa (0.3 %). Our method allows for mapping of subsurface water flow paths and spatially referencing the pressure distribution within. Further, our method would be extendable to the reconstruction of other, previously underexplored subsurface fluid flow paths such as pipelines or karst caves.

Funder

Norges Forskningsråd

Horizon 2020

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3